| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > syl2anc | GIF version | ||
| Description: Syllogism inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| syl2anc.1 | ⊢ R⊧S |
| syl2anc.2 | ⊢ R⊧T |
| syl2anc.3 | ⊢ (S, T)⊧A |
| Ref | Expression |
|---|---|
| syl2anc | ⊢ R⊧A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc.1 | . . 3 ⊢ R⊧S | |
| 2 | syl2anc.2 | . . 3 ⊢ R⊧T | |
| 3 | 1, 2 | jca 18 | . 2 ⊢ R⊧(S, T) |
| 4 | syl2anc.3 | . 2 ⊢ (S, T)⊧A | |
| 5 | 3, 4 | syl 16 | 1 ⊢ R⊧A |
| Colors of variables: type var term |
| Syntax hints: kct 10 ⊧wffMMJ2 11 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 |
| This theorem is referenced by: mpdan 35 syldan 36 trul 39 eqcomx 52 ancoms 54 sylan 59 an32s 60 anassrs 62 ceq12 88 hbxfr 108 |
| Copyright terms: Public domain | W3C validator |