HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  syl2anc GIF version

Theorem syl2anc 19
Description: Syllogism inference. (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
syl2anc.1 RS
syl2anc.2 RT
syl2anc.3 (S, T)⊧A
Assertion
Ref Expression
syl2anc RA

Proof of Theorem syl2anc
StepHypRef Expression
1 syl2anc.1 . . 3 RS
2 syl2anc.2 . . 3 RT
31, 2jca 18 . 2 R⊧(S, T)
4 syl2anc.3 . 2 (S, T)⊧A
53, 4syl 16 1 RA
Colors of variables: type var term
Syntax hints:  kct 10  wffMMJ2 11
This theorem was proved from axioms:  ax-syl 15  ax-jca 17
This theorem is referenced by:  mpdan  35  syldan  36  trul  39  eqcomx  52  ancoms  54  sylan  59  an32s  60  anassrs  62  ceq12  88  hbxfr  108
  Copyright terms: Public domain W3C validator