Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > adantr | GIF version |
Description: Extract an assumption from the context. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
adantr.1 | ⊢ R⊧T |
adantr.2 | ⊢ S:∗ |
Ref | Expression |
---|---|
adantr | ⊢ (R, S)⊧T |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantr.1 | . . . 4 ⊢ R⊧T | |
2 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
3 | adantr.2 | . . 3 ⊢ S:∗ | |
4 | 2, 3 | simpl 22 | . 2 ⊢ (R, S)⊧R |
5 | 4, 1 | syl 16 | 1 ⊢ (R, S)⊧T |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-simpl 20 ax-cb1 29 |
This theorem is referenced by: adantl 56 ct1 57 sylan 59 an32s 60 anassrs 62 eqtru 86 hbxfr 108 hbov 111 hbct 155 imp 157 olc 164 orc 165 exlimdv2 166 exlimd 183 ax1 203 ax5 207 ax12 215 ax13 216 ax14 217 |
Copyright terms: Public domain | W3C validator |