ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabss5 Unicode version

Theorem anabss5 573
Description: Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
Hypothesis
Ref Expression
anabss5.1  |-  ( (
ph  /\  ( ph  /\ 
ps ) )  ->  ch )
Assertion
Ref Expression
anabss5  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabss5
StepHypRef Expression
1 anabss5.1 . . 3  |-  ( (
ph  /\  ( ph  /\ 
ps ) )  ->  ch )
21anassrs 398 . 2  |-  ( ( ( ph  /\  ph )  /\  ps )  ->  ch )
32anabsan 570 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anabsi5  574  syl2an2r  590  mp3an2ani  1339
  Copyright terms: Public domain W3C validator