ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabsan Unicode version

Theorem anabsan 570
Description: Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.) (Revised by NM, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsan.1  |-  ( ( ( ph  /\  ph )  /\  ps )  ->  ch )
Assertion
Ref Expression
anabsan  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsan
StepHypRef Expression
1 pm4.24 393 . 2  |-  ( ph  <->  (
ph  /\  ph ) )
2 anabsan.1 . 2  |-  ( ( ( ph  /\  ph )  /\  ps )  ->  ch )
31, 2sylanb 282 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anabss1  571  anabss5  573  anandis  587  iddvds  11766  1dvds  11767
  Copyright terms: Public domain W3C validator