![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2an2r | Unicode version |
Description: syl2anr 290 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2r.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an2r.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl2an2r.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2an2r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2an2r.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2an2r.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | anabss5 578 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: op1stbg 4493 mapen 6863 fival 6986 supelti 7018 supmaxti 7020 infminti 7043 xnegdi 9885 frecuzrdgsuc 10431 hashunlem 10801 2zsupmax 11251 xrmin1inf 11292 serf0 11377 fsumabs 11490 binomlem 11508 cvgratz 11557 efcllemp 11683 ef0lem 11685 tannegap 11753 modm1div 11824 divalglemnqt 11942 lcmid 12097 hashdvds 12238 prmdivdiv 12254 odzcllem 12259 reumodprminv 12270 nnnn0modprm0 12272 pythagtrip 12300 pcmpt 12358 pockthg 12372 4sqlem9 12401 ennnfonelemkh 12430 ctinf 12448 nninfdclemp1 12468 setsslid 12530 imasival 12748 imasaddflemg 12758 grpinvalem 12826 issubmnd 12868 isgrpinv 12963 grpinvssd 12986 imasgrp 13018 mulgnndir 13056 subginv 13085 subginvcl 13087 ghmpreima 13165 conjnsg 13180 srgidmlem 13292 ringidmlem 13336 imasring 13374 dvdsr01 13414 unitnegcl 13440 01eq0ring 13496 issubrng2 13517 subrginv 13544 subrgunit 13546 aprsym 13560 lmodvneg1 13606 lspsn 13692 isridlrng 13758 lidl0cl 13759 rspcl 13767 rspssid 13768 rnglidlmmgm 13772 2idlcpblrng 13798 quscrng 13807 topbas 13950 tgrest 14052 txss12 14149 cnplimclemle 14520 efltlemlt 14578 coseq0q4123 14638 lgsval 14788 lgscllem 14791 neapmkvlem 15199 |
Copyright terms: Public domain | W3C validator |