![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2an2r | Unicode version |
Description: syl2anr 290 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2r.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an2r.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl2an2r.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2an2r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2an2r.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2an2r.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | anabss5 578 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: op1stbg 4510 mapen 6902 fival 7029 supelti 7061 supmaxti 7063 infminti 7086 xnegdi 9934 frecuzrdgsuc 10485 hashunlem 10875 2zsupmax 11369 xrmin1inf 11410 serf0 11495 fsumabs 11608 binomlem 11626 cvgratz 11675 efcllemp 11801 ef0lem 11803 tannegap 11871 modm1div 11943 divalglemnqt 12061 lcmid 12218 hashdvds 12359 prmdivdiv 12375 odzcllem 12380 reumodprminv 12391 nnnn0modprm0 12393 pythagtrip 12421 pcmpt 12481 pockthg 12495 4sqlem9 12524 4sqleminfi 12535 4sqexercise1 12536 4sqlem11 12539 ennnfonelemkh 12569 ctinf 12587 nninfdclemcl 12605 nninfdclemp1 12607 setsslid 12669 imasival 12889 imasaddflemg 12899 grpinvalem 12968 issubmnd 13023 isgrpinv 13126 grpinvssd 13149 imasgrp 13181 mulgnndir 13221 subginv 13251 subginvcl 13253 ghmpreima 13336 conjnsg 13351 srgidmlem 13474 ringidmlem 13518 imasring 13560 dvdsr01 13600 unitnegcl 13626 01eq0ring 13685 issubrng2 13706 subrginv 13733 subrgunit 13735 aprsym 13780 lmodvneg1 13826 lspsn 13912 isridlrng 13978 lidl0cl 13979 rspcl 13987 rspssid 13988 rnglidlmmgm 13992 2idlcpblrng 14019 quscrng 14029 rspsn 14030 znidom 14145 topbas 14235 tgrest 14337 txss12 14434 cnplimclemle 14822 efltlemlt 14909 coseq0q4123 14969 lgsval 15120 lgscllem 15123 gausslemma2dlem1a 15174 lgseisen 15190 lgsquadlem1 15191 neapmkvlem 15557 |
Copyright terms: Public domain | W3C validator |