ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  animorlr Unicode version

Theorem animorlr 825
Description: Conjunction implies disjunction with one common formula (3/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorlr  |-  ( (
ph  /\  ps )  ->  ( ch  \/  ph ) )

Proof of Theorem animorlr
StepHypRef Expression
1 simpl 109 . 2  |-  ( (
ph  /\  ps )  ->  ph )
21olcd 734 1  |-  ( (
ph  /\  ps )  ->  ( ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator