Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dcstab Unicode version

Theorem bj-dcstab 14748
Description: A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dcstab  |-  (DECID  ph  -> STAB  ph )

Proof of Theorem bj-dcstab
StepHypRef Expression
1 df-dc 836 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 bj-trst 14731 . . 3  |-  ( ph  -> STAB  ph )
3 bj-fast 14733 . . 3  |-  ( -. 
ph  -> STAB  ph )
42, 3jaoi 717 . 2  |-  ( (
ph  \/  -.  ph )  -> STAB  ph )
51, 4sylbi 121 1  |-  (DECID  ph  -> STAB  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  STAB wstab 831  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836
This theorem is referenced by:  bj-nnbidc  14749
  Copyright terms: Public domain W3C validator