| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dcstab | GIF version | ||
| Description: A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-dcstab | ⊢ (DECID 𝜑 → STAB 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | bj-trst 15385 | . . 3 ⊢ (𝜑 → STAB 𝜑) | |
| 3 | bj-fast 15387 | . . 3 ⊢ (¬ 𝜑 → STAB 𝜑) | |
| 4 | 2, 3 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → STAB 𝜑) |
| 5 | 1, 4 | sylbi 121 | 1 ⊢ (DECID 𝜑 → STAB 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 STAB wstab 831 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: bj-nnbidc 15403 |
| Copyright terms: Public domain | W3C validator |