Theorem List for Intuitionistic Logic Explorer - 14901-15000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | limcimo 14901* | 
Conditions which ensure there is at most one limit value of   at
          . 
(Contributed by Mario Carneiro, 25-Dec-2016.)  (Revised by
         Jim Kingdon, 8-Jul-2023.)
 | 
                                                                                                                 
 ↾t                                                      #                                                         lim      | 
|   | 
| Theorem | limcresi 14902 | 
Any limit of   is also
a limit of the restriction of  .
       (Contributed by Mario Carneiro, 28-Dec-2016.)
 | 
     lim                lim     | 
|   | 
| Theorem | cnplimcim 14903 | 
If a function is continuous at  , its limit at   equals the
       value of the function there.  (Contributed by Mario Carneiro,
       28-Dec-2016.)  (Revised by Jim Kingdon, 14-Jun-2023.)
 | 
                                  ↾t                                                                
      lim        | 
|   | 
| Theorem | cnplimclemle 14904 | 
Lemma for cnplimccntop 14906.  Satisfying the epsilon condition for
           continuity.  (Contributed by Mario Carneiro and Jim Kingdon,
           17-Nov-2023.)
 | 
                                  ↾t                                                                                        lim                                                                             
     #                                                                   
            
                  
          
                | 
|   | 
| Theorem | cnplimclemr 14905 | 
Lemma for cnplimccntop 14906.  The reverse direction.  (Contributed by
         Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 | 
                                  ↾t                                                                                        lim                                    | 
|   | 
| Theorem | cnplimccntop 14906 | 
A function is continuous at   iff its limit at   equals the
       value of the function there.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
                                  ↾t                                                                
      lim        | 
|   | 
| Theorem | cnlimcim 14907* | 
If   is a continuous
function, the limit of the function at each
       point equals the value of the function.  (Contributed by Mario Carneiro,
       28-Dec-2016.)  (Revised by Jim Kingdon, 16-Jun-2023.)
 | 
                                                   lim        | 
|   | 
| Theorem | cnlimc 14908* | 
  is a continuous
function iff the limit of the function at each
       point equals the value of the function.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
                                             
      lim        | 
|   | 
| Theorem | cnlimci 14909 | 
If   is a continuous
function, then the limit of the function at any
       point equals its value.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
                                                              lim      | 
|   | 
| Theorem | cnmptlimc 14910* | 
If   is a continuous
function, then the limit of the function at any
       point equals its value.  (Contributed by Mario Carneiro,
       28-Dec-2016.)
 | 
           
                                                 
                                          lim      | 
|   | 
| Theorem | limccnpcntop 14911 | 
If the limit of   at
  is   and   is continuous at
        , then the
limit of       at   is     .
       (Contributed by Mario Carneiro, 28-Dec-2016.)  (Revised by Jim Kingdon,
       18-Jun-2023.)
 | 
                                                                          ↾t                        lim                                                
                  lim      | 
|   | 
| Theorem | limccnp2lem 14912* | 
Lemma for limccnp2cntop 14913.  This is most of the result, expressed in
         epsilon-delta form, with a large number of hypotheses so that lengthy
         expressions do not need to be repeated.  (Contributed by Jim Kingdon,
         9-Nov-2023.)
 | 
                                                                  
                                                                          ↾t   
                                     lim                  
                  lim                                                                                                                     
                                             
                                                                                              #                     
              
                                                   #                     
              
                                      #                                                  | 
|   | 
| Theorem | limccnp2cntop 14913* | 
The image of a convergent sequence under a continuous map is convergent
       to the image of the original point.  Binary operation version.
       (Contributed by Mario Carneiro, 28-Dec-2016.)  (Revised by Jim Kingdon,
       14-Nov-2023.)
 | 
                                                                  
                                                                          ↾t   
                                     lim                  
                  lim                                                                               lim      | 
|   | 
| Theorem | limccoap 14914* | 
Composition of two limits.  This theorem is only usable in the case
       where   #   implies R(x) #   so it is less general than
       might appear at first.  (Contributed by Mario Carneiro, 29-Dec-2016.)
       (Revised by Jim Kingdon, 18-Dec-2023.)
 | 
                       #
      
                #                
                  #
      
                                          #         lim                                 
       #         lim                
                          
                      #
         lim      | 
|   | 
| Theorem | reldvg 14915 | 
The derivative function is a relation.  (Contributed by Mario Carneiro,
       7-Aug-2014.)  (Revised by Jim Kingdon, 25-Jun-2023.)
 | 
                                      | 
|   | 
| Theorem | dvlemap 14916* | 
Closure for a difference quotient.  (Contributed by Mario Carneiro,
       1-Sep-2014.)  (Revised by Jim Kingdon, 27-Jun-2023.)
 | 
                                                                                   #
      
                      
      
      | 
|   | 
| Theorem | dvfvalap 14917* | 
Value and set bounds on the derivative operator.  (Contributed by Mario
       Carneiro, 7-Aug-2014.)  (Revised by Jim Kingdon, 27-Jun-2023.)
 | 
         ↾t                                                                                             
             
       #                                   lim               
                     | 
|   | 
| Theorem | eldvap 14918* | 
The differentiable predicate.  A function   is differentiable at
         with
derivative   iff   is defined in a
neighborhood of
         and the
difference quotient has limit   at  .
       (Contributed by Mario Carneiro, 7-Aug-2014.)  (Revised by Jim Kingdon,
       27-Jun-2023.)
 | 
         ↾t                                                         #                           
                                                                                                                  
    lim        | 
|   | 
| Theorem | dvcl 14919 | 
The derivative function takes values in the complex numbers.
       (Contributed by Mario Carneiro, 7-Aug-2014.)  (Revised by Mario
       Carneiro, 9-Feb-2015.)
 | 
                                                                       
                 | 
|   | 
| Theorem | dvbssntrcntop 14920 | 
The set of differentiable points is a subset of the interior of the
         domain of the function.  (Contributed by Mario Carneiro, 7-Aug-2014.)
         (Revised by Jim Kingdon, 27-Jun-2023.)
 | 
                                                                     ↾t                                                                 | 
|   | 
| Theorem | dvbss 14921 | 
The set of differentiable points is a subset of the domain of the
       function.  (Contributed by Mario Carneiro, 6-Aug-2014.)  (Revised by
       Mario Carneiro, 9-Feb-2015.)
 | 
                                                                                  | 
|   | 
| Theorem | dvbsssg 14922 | 
The set of differentiable points is a subset of the ambient topology.
       (Contributed by Mario Carneiro, 18-Mar-2015.)  (Revised by Jim Kingdon,
       28-Jun-2023.)
 | 
                                    
      | 
|   | 
| Theorem | recnprss 14923 | 
Both   and   are subsets of  .  (Contributed by Mario
     Carneiro, 10-Feb-2015.)
 | 
                       | 
|   | 
| Theorem | dvfgg 14924 | 
Explicitly write out the functionality condition on derivative for
             and  .  (Contributed by Mario Carneiro, 9-Feb-2015.)
       (Revised by Jim Kingdon, 28-Jun-2023.)
 | 
                                  
                   | 
|   | 
| Theorem | dvfpm 14925 | 
The derivative is a function.  (Contributed by Mario Carneiro,
     8-Aug-2014.)  (Revised by Jim Kingdon, 28-Jul-2023.)
 | 
                   
                   | 
|   | 
| Theorem | dvfcnpm 14926 | 
The derivative is a function.  (Contributed by Mario Carneiro,
     9-Feb-2015.)  (Revised by Jim Kingdon, 28-Jul-2023.)
 | 
                   
                   | 
|   | 
| Theorem | dvidlemap 14927* | 
Lemma for dvid 14931 and dvconst 14930.  (Contributed by Mario Carneiro,
       8-Aug-2014.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
                         
                      #    
                                                                      
              | 
|   | 
| Theorem | dvidrelem 14928* | 
Lemma for dvidre 14933 and dvconstre 14932.  Analogue of dvidlemap 14927 for real
       numbers rather than complex numbers.  (Contributed by Jim Kingdon,
       3-Oct-2025.)
 | 
                         
                      #    
                                                                      
              | 
|   | 
| Theorem | dvidsslem 14929* | 
Lemma for dvconstss 14934.  Analogue of dvidlemap 14927 where   is defined
       on an open subset of the real or complex numbers.  (Contributed by Jim
       Kingdon, 3-Oct-2025.)
 | 
                                  ↾t                                                                                       
        
       #                                                                                        | 
|   | 
| Theorem | dvconst 14930 | 
Derivative of a constant function.  (Contributed by Mario Carneiro,
       8-Aug-2014.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
                                        | 
|   | 
| Theorem | dvid 14931 | 
Derivative of the identity function.  (Contributed by Mario Carneiro,
       8-Aug-2014.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
                             | 
|   | 
| Theorem | dvconstre 14932 | 
Real derivative of a constant function.  (Contributed by Jim Kingdon,
       3-Oct-2025.)
 | 
                                        | 
|   | 
| Theorem | dvidre 14933 | 
Real derivative of the identity function.  (Contributed by Jim Kingdon,
       3-Oct-2025.)
 | 
                             | 
|   | 
| Theorem | dvconstss 14934 | 
Derivative of a constant function defined on an open set.  (Contributed
       by Jim Kingdon, 6-Oct-2025.)
 | 
                                  ↾t                                                                                                               | 
|   | 
| Theorem | dvcnp2cntop 14935 | 
A function is continuous at each point for which it is differentiable.
       (Contributed by Mario Carneiro, 9-Aug-2014.)  (Revised by Mario
       Carneiro, 28-Dec-2016.)
 | 
         ↾t                                             
                 
                 
                    | 
|   | 
| Theorem | dvcn 14936 | 
A differentiable function is continuous.  (Contributed by Mario
       Carneiro, 7-Sep-2014.)  (Revised by Mario Carneiro, 7-Sep-2015.)
 | 
          
                 
                               | 
|   | 
| Theorem | dvaddxxbr 14937 | 
The sum rule for derivatives at a point.  That is, if the derivative
         of   at   is   and the derivative of   at   is
          , then the
derivative of the pointwise sum of those two
         functions at  
is      .  (Contributed by Mario Carneiro,
         9-Aug-2014.)  (Revised by Jim Kingdon, 25-Nov-2023.)
 | 
                                                                                          
                                                                         
                       | 
|   | 
| Theorem | dvmulxxbr 14938 | 
The product rule for derivatives at a point.  For the (simpler but
         more limited) function version, see dvmulxx 14940.  (Contributed by Mario
         Carneiro, 9-Aug-2014.)  (Revised by Jim Kingdon, 1-Dec-2023.)
 | 
                                                                                          
                                                                         
                                           | 
|   | 
| Theorem | dvaddxx 14939 | 
The sum rule for derivatives at a point.  For the (more general)
       relation version, see dvaddxxbr 14937.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Revised by Jim Kingdon, 25-Nov-2023.)
 | 
                                                                                                    
                         
                                             
                              | 
|   | 
| Theorem | dvmulxx 14940 | 
The product rule for derivatives at a point.  For the (more general)
       relation version, see dvmulxxbr 14938.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Revised by Jim Kingdon, 2-Dec-2023.)
 | 
                                                                                                    
                         
                                             
                                      
            | 
|   | 
| Theorem | dviaddf 14941 | 
The sum rule for everywhere-differentiable functions.  (Contributed by
       Mario Carneiro, 9-Aug-2014.)  (Revised by Mario Carneiro,
       10-Feb-2015.)
 | 
                                                                                             
                                                                   
                               | 
|   | 
| Theorem | dvimulf 14942 | 
The product rule for everywhere-differentiable functions.  (Contributed
       by Mario Carneiro, 9-Aug-2014.)  (Revised by Mario Carneiro,
       10-Feb-2015.)
 | 
                                                                                             
                                                                   
                                                 | 
|   | 
| Theorem | dvcoapbr 14943* | 
The chain rule for derivatives at a point.  The
           #           #      
hypothesis constrains what
         functions work for  .  (Contributed by Mario Carneiro,
         9-Aug-2014.)  (Revised by Jim Kingdon, 21-Dec-2023.)
 | 
                                                                                                 #           #                                                                                                                                              
                    | 
|   | 
| Theorem | dvcjbr 14944 | 
The derivative of the conjugate of a function.  For the (simpler but
       more limited) function version, see dvcj 14945.  (Contributed by Mario
       Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro, 10-Feb-2015.)
 | 
                                                                                                          | 
|   | 
| Theorem | dvcj 14945 | 
The derivative of the conjugate of a function.  For the (more general)
       relation version, see dvcjbr 14944.  (Contributed by Mario Carneiro,
       1-Sep-2014.)  (Revised by Mario Carneiro, 10-Feb-2015.)
 | 
                  
                                  | 
|   | 
| Theorem | dvfre 14946 | 
The derivative of a real function is real.  (Contributed by Mario
       Carneiro, 1-Sep-2014.)
 | 
                  
                        | 
|   | 
| Theorem | dvexp 14947* | 
Derivative of a power function.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Revised by Mario Carneiro, 10-Feb-2015.)
 | 
                    
                                            | 
|   | 
| Theorem | dvexp2 14948* | 
Derivative of an exponential, possibly zero power.  (Contributed by
       Stefan O'Rear, 13-Nov-2014.)  (Revised by Mario Carneiro,
       10-Feb-2015.)
 | 
             
       
                             
                            | 
|   | 
| Theorem | dvrecap 14949* | 
Derivative of the reciprocal function.  (Contributed by Mario Carneiro,
       25-Feb-2015.)  (Revised by Mario Carneiro, 28-Dec-2016.)
 | 
                    
            #                                  #
                     | 
|   | 
| Theorem | dvmptidcn 14950 | 
Function-builder for derivative: derivative of the identity.
       (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
       30-Dec-2023.)
 | 
           
                       | 
|   | 
| Theorem | dvmptccn 14951* | 
Function-builder for derivative: derivative of a constant.  (Contributed
       by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
       30-Dec-2023.)
 | 
                                                            | 
|   | 
| Theorem | dvmptid 14952* | 
Function-builder for derivative: derivative of the identity.
       (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Mario
       Carneiro, 11-Feb-2015.)
 | 
                                                                 | 
|   | 
| Theorem | dvmptc 14953* | 
Function-builder for derivative: derivative of a constant.  (Contributed
       by Mario Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro,
       11-Feb-2015.)
 | 
                                                                                     | 
|   | 
| Theorem | dvmptclx 14954* | 
Closure lemma for dvmptmulx 14956 and other related theorems.  (Contributed
       by Mario Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro,
       11-Feb-2015.)
 | 
                                                            
                                                                                                                   | 
|   | 
| Theorem | dvmptaddx 14955* | 
Function-builder for derivative, addition rule.  (Contributed by Mario
         Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro, 11-Feb-2015.)
 | 
                                                            
                                                                                                
                                                             
                                                                                            | 
|   | 
| Theorem | dvmptmulx 14956* | 
Function-builder for derivative, product rule.  (Contributed by Mario
         Carneiro, 1-Sep-2014.)  (Revised by Mario Carneiro, 11-Feb-2015.)
 | 
                                                            
                                                                                                
                                                             
                                                                                                        | 
|   | 
| Theorem | dvmptcmulcn 14957* | 
Function-builder for derivative, product rule for constant multiplier.
         (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
         31-Dec-2023.)
 | 
                                                                  
                                                                                                                | 
|   | 
| Theorem | dvmptnegcn 14958* | 
Function-builder for derivative, product rule for negatives.
       (Contributed by Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
       31-Dec-2023.)
 | 
                                                                  
                                                                 
       
          | 
|   | 
| Theorem | dvmptsubcn 14959* | 
Function-builder for derivative, subtraction rule.  (Contributed by
         Mario Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon,
         31-Dec-2023.)
 | 
                                                                  
                                             
                                                             
                                                                                            | 
|   | 
| Theorem | dvmptcjx 14960* | 
Function-builder for derivative, conjugate rule.  (Contributed by Mario
       Carneiro, 1-Sep-2014.)  (Revised by Jim Kingdon, 24-May-2024.)
 | 
                                                                  
                                                                                                            | 
|   | 
| Theorem | dvmptfsum 14961* | 
Function-builder for derivative, finite sums rule.  (Contributed by
       Stefan O'Rear, 12-Nov-2014.)
 | 
         ↾t                   ℂfld                                                                                      
                                            
                        
                                                         
                         
       
           
     | 
|   | 
| Theorem | dveflem 14962 | 
Derivative of the exponential function at 0.  The key step in the proof
       is eftlub 11855, to show that
                                         .
       (Contributed by Mario Carneiro, 9-Aug-2014.)  (Revised by Mario
       Carneiro, 28-Dec-2016.)
 | 
            | 
|   | 
| Theorem | dvef 14963 | 
Derivative of the exponential function.  (Contributed by Mario Carneiro,
       9-Aug-2014.)  (Proof shortened by Mario Carneiro, 10-Feb-2015.)
 | 
           
   | 
|   | 
| PART 11  BASIC REAL AND COMPLEX
 FUNCTIONS
 | 
|   | 
| 11.1  Polynomials
 | 
|   | 
| 11.1.1  Elementary properties of complex
 polynomials
 | 
|   | 
| Syntax | cply 14964 | 
Extend class notation to include the set of complex polynomials.
 | 
  Poly | 
|   | 
| Syntax | cidp 14965 | 
Extend class notation to include the identity polynomial.
 | 
     | 
|   | 
| Definition | df-ply 14966* | 
Define the set of polynomials on the complex numbers with coefficients
       in the given subset.  (Contributed by Mario Carneiro, 17-Jul-2014.)
 | 
  Poly                      
                                                                 | 
|   | 
| Definition | df-idp 14967 | 
Define the identity polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
            
    | 
|   | 
| Theorem | plyval 14968* | 
Value of the polynomial set function.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
            Poly               
                                                                 | 
|   | 
| Theorem | plybss 14969 | 
Reverse closure of the parameter   of the polynomial set function.
       (Contributed by Mario Carneiro, 22-Jul-2014.)
 | 
        Poly             | 
|   | 
| Theorem | elply 14970* | 
Definition of a polynomial with coefficients in  .  (Contributed by
       Mario Carneiro, 17-Jul-2014.)
 | 
        Poly                                                                                    | 
|   | 
| Theorem | elply2 14971* | 
The coefficient function can be assumed to have zeroes outside
          .  (Contributed by Mario Carneiro,
20-Jul-2014.)  (Revised
       by Mario Carneiro, 23-Aug-2014.)
 | 
        Poly                                                     
                                                         | 
|   | 
| Theorem | plyun0 14972 | 
The set of polynomials is unaffected by the addition of zero.  (This is
       built into the definition because all higher powers of a polynomial are
       effectively zero, so we require that the coefficient field contain zero
       to simplify some of our closure theorems.)  (Contributed by Mario
       Carneiro, 17-Jul-2014.)
 | 
   Poly               Poly    | 
|   | 
| Theorem | plyf 14973 | 
A polynomial is a function on the complex numbers.  (Contributed by
       Mario Carneiro, 22-Jul-2014.)
 | 
        Poly             | 
|   | 
| Theorem | plyss 14974 | 
The polynomial set function preserves the subset relation.  (Contributed
       by Mario Carneiro, 17-Jul-2014.)
 | 
                      Poly       Poly     | 
|   | 
| Theorem | plyssc 14975 | 
Every polynomial ring is contained in the ring of polynomials over
        . 
(Contributed by Mario Carneiro, 22-Jul-2014.)
 | 
   Poly       Poly    | 
|   | 
| Theorem | elplyr 14976* | 
Sufficient condition for elementhood in the set of polynomials.
       (Contributed by Mario Carneiro, 17-Jul-2014.)  (Revised by Mario
       Carneiro, 23-Aug-2014.)
 | 
                                                                    Poly     | 
|   | 
| Theorem | elplyd 14977* | 
Sufficient condition for elementhood in the set of polynomials.
       (Contributed by Mario Carneiro, 17-Jul-2014.)
 | 
                                                                                
                                    Poly     | 
|   | 
| Theorem | ply1termlem 14978* | 
Lemma for ply1term 14979.  (Contributed by Mario Carneiro,
26-Jul-2014.)
 | 
                                                                                                         | 
|   | 
| Theorem | ply1term 14979* | 
A one-term polynomial.  (Contributed by Mario Carneiro, 17-Jul-2014.)
 | 
                                                                    Poly     | 
|   | 
| Theorem | plypow 14980* | 
A power is a polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
                                            
    Poly     | 
|   | 
| Theorem | plyconst 14981 | 
A constant function is a polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
                                  Poly     | 
|   | 
| Theorem | plyid 14982 | 
The identity function is a polynomial.  (Contributed by Mario Carneiro,
       17-Jul-2014.)
 | 
                           Poly     | 
|   | 
| Theorem | plyaddlem1 14983* | 
Derive the coefficient function for the sum of two polynomials.
       (Contributed by Mario Carneiro, 23-Jul-2014.)
 | 
            Poly                       Poly                                                                                                          
                                                                                                                                                                                        
                                          
                  | 
|   | 
| Theorem | plymullem1 14984* | 
Derive the coefficient function for the product of two polynomials.
       (Contributed by Mario Carneiro, 23-Jul-2014.)
 | 
            Poly                       Poly                                                                                                          
                                                                                                                                                                                        
                             
                                         | 
|   | 
| Theorem | plyaddlem 14985* | 
Lemma for plyadd 14987.  (Contributed by Mario Carneiro,
21-Jul-2014.)
 | 
            Poly                       Poly                       
        
      
                                                                                                                                               
                                                                                                                                                                                        
  Poly     | 
|   | 
| Theorem | plymullem 14986* | 
Lemma for plymul 14988.  (Contributed by Mario Carneiro,
21-Jul-2014.)
 | 
            Poly                       Poly                       
        
      
                                                                                                                                               
                                                                                                                                                                                       
      
                                         
  Poly     | 
|   | 
| Theorem | plyadd 14987* | 
The sum of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 21-Jul-2014.)
 | 
            Poly                       Poly                       
        
      
                                       
  Poly     | 
|   | 
| Theorem | plymul 14988* | 
The product of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 21-Jul-2014.)
 | 
            Poly                       Poly                       
        
      
                                
        
      
                                       
  Poly     | 
|   | 
| Theorem | plysub 14989* | 
The difference of two polynomials is a polynomial.  (Contributed by
       Mario Carneiro, 21-Jul-2014.)
 | 
            Poly                       Poly                       
        
      
                                
        
      
                                                            
  Poly     | 
|   | 
| Theorem | plyaddcl 14990 | 
The sum of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 24-Jul-2014.)
 | 
         Poly         
  Poly    
               
  Poly     | 
|   | 
| Theorem | plymulcl 14991 | 
The product of two polynomials is a polynomial.  (Contributed by Mario
       Carneiro, 24-Jul-2014.)
 | 
         Poly         
  Poly    
               
  Poly     | 
|   | 
| Theorem | plysubcl 14992 | 
The difference of two polynomials is a polynomial.  (Contributed by
       Mario Carneiro, 24-Jul-2014.)
 | 
         Poly         
  Poly    
               
  Poly     | 
|   | 
| Theorem | plycoeid3 14993* | 
Reconstruct a polynomial as an explicit sum of the coefficient function
       up to an index no smaller than the degree of the polynomial.
       (Contributed by Jim Kingdon, 17-Oct-2025.)
 | 
                                                                                                                                                                                                                        | 
|   | 
| Theorem | plycolemc 14994* | 
Lemma for plyco 14995.  The result expressed as a sum, with a
degree and
         coefficients for   specified as hypotheses.  (Contributed by Jim
         Kingdon, 20-Sep-2025.)
 | 
            Poly                       Poly                       
        
      
                                
        
      
                                                                                   
                                                                                                                             Poly     | 
|   | 
| Theorem | plyco 14995* | 
The composition of two polynomials is a polynomial.  (Contributed by
       Mario Carneiro, 23-Jul-2014.)  (Revised by Mario Carneiro,
       23-Aug-2014.)
 | 
            Poly                       Poly                       
        
      
                                
        
      
                                      Poly     | 
|   | 
| Theorem | plycjlemc 14996* | 
Lemma for plycj 14997.  (Contributed by Mario Carneiro,
24-Jul-2014.)
       (Revised by Jim Kingdon, 22-Sep-2025.)
 | 
                                                                                                                                            Poly                                                                 | 
|   | 
| Theorem | plycj 14997* | 
The double conjugation of a polynomial is a polynomial.  (The single
       conjugation is not because our definition of polynomial includes only
       holomorphic functions, i.e. no dependence on      
       independently of  .)  (Contributed by Mario Carneiro,
       24-Jul-2014.)
 | 
                               
                                         Poly                       Poly     | 
|   | 
| Theorem | plycn 14998 | 
A polynomial is a continuous function.  (Contributed by Mario Carneiro,
       23-Jul-2014.)  Avoid ax-mulf 8002.  (Revised by GG, 16-Mar-2025.)
 | 
        Poly                 | 
|   | 
| Theorem | plyrecj 14999 | 
A polynomial with real coefficients distributes under conjugation.
       (Contributed by Mario Carneiro, 24-Jul-2014.)
 | 
         Poly         
                             | 
|   | 
| Theorem | plyreres 15000 | 
Real-coefficient polynomials restrict to real functions.  (Contributed
       by Stefan O'Rear, 16-Nov-2014.)
 | 
        Poly                   |