Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cdeqim | Unicode version |
Description: Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqnot.1 | CondEq |
cdeqim.1 | CondEq |
Ref | Expression |
---|---|
cdeqim | CondEq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | . . . 4 CondEq | |
2 | 1 | cdeqri 2941 | . . 3 |
3 | cdeqim.1 | . . . 4 CondEq | |
4 | 3 | cdeqri 2941 | . . 3 |
5 | 2, 4 | imbi12d 233 | . 2 |
6 | 5 | cdeqi 2940 | 1 CondEq |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 CondEqwcdeq 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-cdeq 2939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |