ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqi Unicode version

Theorem cdeqi 2983
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqi.1  |-  ( x  =  y  ->  ph )
Assertion
Ref Expression
cdeqi  |- CondEq ( x  =  y  ->  ph )

Proof of Theorem cdeqi
StepHypRef Expression
1 cdeqi.1 . 2  |-  ( x  =  y  ->  ph )
2 df-cdeq 2982 . 2  |-  (CondEq (
x  =  y  ->  ph )  <->  ( x  =  y  ->  ph ) )
31, 2mpbir 146 1  |- CondEq ( x  =  y  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4  CondEqwcdeq 2981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-cdeq 2982
This theorem is referenced by:  cdeqth  2985  cdeqnot  2986  cdeqal  2987  cdeqab  2988  cdeqim  2991  cdeqcv  2992  cdeqeq  2993  cdeqel  2994
  Copyright terms: Public domain W3C validator