ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab1 Unicode version

Theorem cdeqab1 2943
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdeqab1  |- CondEq ( x  =  y  ->  { x  |  ph }  =  {
y  |  ps }
)
Distinct variable groups:    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cdeqab1
StepHypRef Expression
1 cdeqnot.1 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
21cdeqri 2937 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32cbvabv 2291 . 2  |-  { x  |  ph }  =  {
y  |  ps }
43cdeqth 2938 1  |- CondEq ( x  =  y  ->  { x  |  ph }  =  {
y  |  ps }
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   {cab 2151  CondEqwcdeq 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-cdeq 2935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator