Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cdeqab1 | Unicode version |
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqnot.1 | CondEq |
Ref | Expression |
---|---|
cdeqab1 | CondEq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | . . . 4 CondEq | |
2 | 1 | cdeqri 2941 | . . 3 |
3 | 2 | cbvabv 2295 | . 2 |
4 | 3 | cdeqth 2942 | 1 CondEq |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 cab 2156 CondEqwcdeq 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-cdeq 2939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |