ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab1 Unicode version

Theorem cdeqab1 2952
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdeqab1  |- CondEq ( x  =  y  ->  { x  |  ph }  =  {
y  |  ps }
)
Distinct variable groups:    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cdeqab1
StepHypRef Expression
1 cdeqnot.1 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
21cdeqri 2946 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32cbvabv 2300 . 2  |-  { x  |  ph }  =  {
y  |  ps }
43cdeqth 2947 1  |- CondEq ( x  =  y  ->  { x  |  ph }  =  {
y  |  ps }
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   {cab 2161  CondEqwcdeq 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-cdeq 2944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator