Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cdeqab1 | Unicode version |
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqnot.1 | CondEq |
Ref | Expression |
---|---|
cdeqab1 | CondEq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | . . . 4 CondEq | |
2 | 1 | cdeqri 2946 | . . 3 |
3 | 2 | cbvabv 2300 | . 2 |
4 | 3 | cdeqth 2947 | 1 CondEq |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 cab 2161 CondEqwcdeq 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-cdeq 2944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |