Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-abs | Unicode version |
Description: Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.) |
Ref | Expression |
---|---|
df-abs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cabs 10939 | . 2 | |
2 | vx | . . 3 | |
3 | cc 7751 | . . 3 | |
4 | 2 | cv 1342 | . . . . 5 |
5 | ccj 10781 | . . . . . 6 | |
6 | 4, 5 | cfv 5188 | . . . . 5 |
7 | cmul 7758 | . . . . 5 | |
8 | 4, 6, 7 | co 5842 | . . . 4 |
9 | csqrt 10938 | . . . 4 | |
10 | 8, 9 | cfv 5188 | . . 3 |
11 | 2, 3, 10 | cmpt 4043 | . 2 |
12 | 1, 11 | wceq 1343 | 1 |
Colors of variables: wff set class |
This definition is referenced by: absval 10943 absf 11052 |
Copyright terms: Public domain | W3C validator |