ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtrval Unicode version

Theorem sqrtrval 11165
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
Assertion
Ref Expression
sqrtrval  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem sqrtrval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2206 . . . 4  |-  ( y  =  A  ->  (
( x ^ 2 )  =  y  <->  ( x ^ 2 )  =  A ) )
21anbi1d 465 . . 3  |-  ( y  =  A  ->  (
( ( x ^
2 )  =  y  /\  0  <_  x
)  <->  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
32riotabidv 5879 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  y  /\  0  <_  x ) )  =  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
4 df-rsqrt 11163 . 2  |-  sqr  =  ( y  e.  RR  |->  ( iota_ x  e.  RR  ( ( x ^
2 )  =  y  /\  0  <_  x
) ) )
5 reex 8013 . . 3  |-  RR  e.  _V
6 riotaexg 5881 . . 3  |-  ( RR  e.  _V  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  A  /\  0  <_  x ) )  e.  _V )
75, 6ax-mp 5 . 2  |-  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  e. 
_V
83, 4, 7fvmpt 5638 1  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4033   ` cfv 5258   iota_crio 5876  (class class class)co 5922   RRcr 7878   0cc0 7879    <_ cle 8062   2c2 9041   ^cexp 10630   sqrcsqrt 11161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-rsqrt 11163
This theorem is referenced by:  sqrt0  11169  resqrtcl  11194  rersqrtthlem  11195  sqrtsq  11209
  Copyright terms: Public domain W3C validator