ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtrval Unicode version

Theorem sqrtrval 10942
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
Assertion
Ref Expression
sqrtrval  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem sqrtrval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2175 . . . 4  |-  ( y  =  A  ->  (
( x ^ 2 )  =  y  <->  ( x ^ 2 )  =  A ) )
21anbi1d 461 . . 3  |-  ( y  =  A  ->  (
( ( x ^
2 )  =  y  /\  0  <_  x
)  <->  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
32riotabidv 5800 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  y  /\  0  <_  x ) )  =  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
4 df-rsqrt 10940 . 2  |-  sqr  =  ( y  e.  RR  |->  ( iota_ x  e.  RR  ( ( x ^
2 )  =  y  /\  0  <_  x
) ) )
5 reex 7887 . . 3  |-  RR  e.  _V
6 riotaexg 5802 . . 3  |-  ( RR  e.  _V  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  A  /\  0  <_  x ) )  e.  _V )
75, 6ax-mp 5 . 2  |-  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  e. 
_V
83, 4, 7fvmpt 5563 1  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   ` cfv 5188   iota_crio 5797  (class class class)co 5842   RRcr 7752   0cc0 7753    <_ cle 7934   2c2 8908   ^cexp 10454   sqrcsqrt 10938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-rsqrt 10940
This theorem is referenced by:  sqrt0  10946  resqrtcl  10971  rersqrtthlem  10972  sqrtsq  10986
  Copyright terms: Public domain W3C validator