ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtrval Unicode version

Theorem sqrtrval 11144
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
Assertion
Ref Expression
sqrtrval  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem sqrtrval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2203 . . . 4  |-  ( y  =  A  ->  (
( x ^ 2 )  =  y  <->  ( x ^ 2 )  =  A ) )
21anbi1d 465 . . 3  |-  ( y  =  A  ->  (
( ( x ^
2 )  =  y  /\  0  <_  x
)  <->  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
32riotabidv 5875 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  y  /\  0  <_  x ) )  =  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
4 df-rsqrt 11142 . 2  |-  sqr  =  ( y  e.  RR  |->  ( iota_ x  e.  RR  ( ( x ^
2 )  =  y  /\  0  <_  x
) ) )
5 reex 8006 . . 3  |-  RR  e.  _V
6 riotaexg 5877 . . 3  |-  ( RR  e.  _V  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  A  /\  0  <_  x ) )  e.  _V )
75, 6ax-mp 5 . 2  |-  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  e. 
_V
83, 4, 7fvmpt 5634 1  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   ` cfv 5254   iota_crio 5872  (class class class)co 5918   RRcr 7871   0cc0 7872    <_ cle 8055   2c2 9033   ^cexp 10609   sqrcsqrt 11140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-rsqrt 11142
This theorem is referenced by:  sqrt0  11148  resqrtcl  11173  rersqrtthlem  11174  sqrtsq  11188
  Copyright terms: Public domain W3C validator