ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtrval Unicode version

Theorem sqrtrval 10487
Description: Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
Assertion
Ref Expression
sqrtrval  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem sqrtrval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2098 . . . 4  |-  ( y  =  A  ->  (
( x ^ 2 )  =  y  <->  ( x ^ 2 )  =  A ) )
21anbi1d 454 . . 3  |-  ( y  =  A  ->  (
( ( x ^
2 )  =  y  /\  0  <_  x
)  <->  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
32riotabidv 5624 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  y  /\  0  <_  x ) )  =  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
4 df-rsqrt 10485 . 2  |-  sqr  =  ( y  e.  RR  |->  ( iota_ x  e.  RR  ( ( x ^
2 )  =  y  /\  0  <_  x
) ) )
5 reex 7530 . . 3  |-  RR  e.  _V
6 riotaexg 5626 . . 3  |-  ( RR  e.  _V  ->  ( iota_ x  e.  RR  (
( x ^ 2 )  =  A  /\  0  <_  x ) )  e.  _V )
75, 6ax-mp 7 . 2  |-  ( iota_ x  e.  RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )  e. 
_V
83, 4, 7fvmpt 5394 1  |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e.  RR  ( ( x ^
2 )  =  A  /\  0  <_  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   _Vcvv 2620   class class class wbr 3851   ` cfv 5028   iota_crio 5621  (class class class)co 5666   RRcr 7403   0cc0 7404    <_ cle 7577   2c2 8527   ^cexp 10008   sqrcsqrt 10483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-cnex 7490  ax-resscn 7491
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-rsqrt 10485
This theorem is referenced by:  sqrt0  10491  resqrtcl  10516  rersqrtthlem  10517  sqrtsq  10531
  Copyright terms: Public domain W3C validator