HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremabs2difd 11001 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B ) ) )
 
Theoremabs2dif2d 11002 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  <_  ( ( abs `  A )  +  ( abs `  B ) ) )
 
Theoremabs2difabsd 11003 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( ( abs `  A )  -  ( abs `  B )
 ) )  <_  ( abs `  ( A  -  B ) ) )
 
Theoremabs3difd 11004 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( C  -  B ) ) ) )
 
Theoremabs3lemd 11005 Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  ( abs `  ( A  -  C ) )  < 
 ( D  /  2
 ) )   &    |-  ( ph  ->  ( abs `  ( C  -  B ) )  < 
 ( D  /  2
 ) )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  <  D )
 
Theoremqdenre 11006* The rational numbers are dense in 
RR: any real number can be approximated with arbitrary precision by a rational number. For order theoretic density, see qbtwnre 10065. (Contributed by BJ, 15-Oct-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( abs `  ( x  -  A ) )  <  B )
 
4.7.5  The maximum of two real numbers
 
Theoremmaxcom 11007 The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |- 
 sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )
 
Theoremmaxabsle 11008 An upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  (
 ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
Theoremmaxleim 11009 Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B 
 ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
 
Theoremmaxabslemab 11010 Lemma for maxabs 11013. A variation of maxleim 11009- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  (
 ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 )  =  B )
 
Theoremmaxabslemlub 11011 Lemma for maxabs 11013. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  C  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )   =>    |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremmaxabslemval 11012* Lemma for maxabs 11013. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  / 
 2 )  e.  RR  /\ 
 A. x  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 )  < 
 x  /\  A. x  e. 
 RR  ( x  < 
 ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 )  ->  E. z  e.  { A ,  B } x  < 
 z ) ) )
 
Theoremmaxabs 11013 Maximum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
Theoremmaxcl 11014 The maximum of two real numbers is a real number. (Contributed by Jim Kingdon, 22-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
 
Theoremmaxle1 11015 The maximum of two reals is no smaller than the first real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremmaxle2 11016 The maximum of two reals is no smaller than the second real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  sup ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremmaxleast 11017 The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A 
 <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
 
Theoremmaxleastb 11018 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Jim Kingdon, 31-Jan-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremmaxleastlt 11019 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) ) 
 ->  ( C  <  A  \/  C  <  B ) )
 
Theoremmaxleb 11020 Equivalence of  <_ and being equal to the maximum of two reals. Lemma 3.12 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
 
Theoremdfabsmax 11021 Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.)
 |-  ( A  e.  RR  ->  ( abs `  A )  =  sup ( { A ,  -u A } ,  RR ,  <  )
 )
 
Theoremmaxltsup 11022 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremmax0addsup 11023 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
 |-  ( A  e.  RR  ->  ( sup ( { A ,  0 } ,  RR ,  <  )  +  sup ( { -u A ,  0 } ,  RR ,  <  ) )  =  ( abs `  A ) )
 
Theoremrexanre 11024* Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
 |-  ( A  C_  RR  ->  ( E. j  e. 
 RR  A. k  e.  A  ( j  <_  k  ->  ( ph  /\  ps )
 ) 
 <->  ( E. j  e. 
 RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ps ) ) ) )
 
Theoremrexico 11025* Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
 
Theoremmaxclpr 11026 The maximum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9122 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B } 
 <->  ( A  <_  B  \/  B  <_  A )
 ) )
 
Theoremrpmaxcl 11027 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
Theoremzmaxcl 11028 The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  ZZ )
 
Theorem2zsupmax 11029 Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A )
 )
 
Theoremfimaxre2 11030* A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
 |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y 
 <_  x )
 
Theoremnegfi 11031* The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
 |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e. 
 RR  |  -u n  e.  A }  e.  Fin )
 
4.7.6  The minimum of two real numbers
 
Theoremmincom 11032 The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |- inf
 ( { A ,  B } ,  RR ,  <  )  = inf ( { B ,  A } ,  RR ,  <  )
 
Theoremminmax 11033 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
 
Theoremmincl 11034 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR )
 
Theoremmin1inf 11035 The minimum of two numbers is less than or equal to the first. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  <_  A )
 
Theoremmin2inf 11036 The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  <_  B )
 
Theoremlemininf 11037 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_ inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <_  B  /\  A  <_  C ) ) )
 
Theoremltmininf 11038 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <  B  /\  A  <  C ) ) )
 
Theoremminabs 11039 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
Theoremminclpr 11040 The minimum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9122 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B } 
 <->  ( A  <_  B  \/  B  <_  A )
 ) )
 
Theoremrpmincl 11041 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
Theorembdtrilem 11042 Lemma for bdtri 11043. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (
 ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C ) ) ) 
 <_  ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
 
Theorembdtri 11043 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( {
 ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
 ) )
 
Theoremmul0inf 11044 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 10866 and mulap0bd 8442 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
 
4.7.7  The maximum of two extended reals
 
Theoremxrmaxleim 11045 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
 
Theoremxrmaxiflemcl 11046 Lemma for xrmaxif 11052. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
 
Theoremxrmaxifle 11047 An upper bound for  { A ,  B } in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
 
Theoremxrmaxiflemab 11048 Lemma for xrmaxif 11052. A variation of xrmaxleim 11045- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) )  =  B )
 
Theoremxrmaxiflemlub 11049 Lemma for xrmaxif 11052. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )   =>    |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrmaxiflemcom 11050 Lemma for xrmaxif 11052. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
 
Theoremxrmaxiflemval 11051* Lemma for xrmaxif 11052. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\ 
 A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  <  M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
 
Theoremxrmaxif 11052 Maximum of two extended reals in terms of  if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) ) )
 
Theoremxrmaxcl 11053 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmax1sup 11054 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
Theoremxrmax2sup 11055 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
Theoremxrmaxrecl 11056 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
 
Theoremxrmaxleastlt 11057 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  C  <  sup ( { A ,  B } ,  RR* ,  <  ) ) )  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrltmaxsup 11058 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( C  <  A  \/  C  <  B ) ) )
 
Theoremxrmaxltsup 11059 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremxrmaxlesup 11060 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  ) 
 <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremxrmaxaddlem 11061 Lemma for xrmaxadd 11062. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR*
 ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrmaxadd 11062 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
4.7.8  The minimum of two extended reals
 
Theoremxrnegiso 11063 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  F  =  ( x  e.  RR*  |->  -e
 x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' F  =  F )
 
Theoreminfxrnegsupex 11064* The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )   &    |-  ( ph  ->  A 
 C_  RR* )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
 
Theoremxrnegcon1d 11065 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
 
Theoremxrminmax 11066 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
 
Theoremxrmincl 11067 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmin1inf 11068 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  A )
 
Theoremxrmin2inf 11069 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  B )
 
Theoremxrmineqinf 11070 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  B )
 
Theoremxrltmininf 11071 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B 
 /\  A  <  C ) ) )
 
Theoremxrlemininf 11072 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <_  B 
 /\  A  <_  C ) ) )
 
Theoremxrminltinf 11073 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  <  A ) ) )
 
Theoremxrminrecl 11074 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR* ,  <  )  = inf ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremxrminrpcl 11075 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
 
Theoremxrminadd 11076 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  -> inf ( {
 ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrbdtri 11077 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  ) 
 <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremiooinsup 11078 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A (,) B )  i^i  ( C (,) D ) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
 ) )
 
4.8  Elementary limits and convergence
 
4.8.1  Limits
 
Syntaxcli 11079 Extend class notation with convergence relation for limits.
 class  ~~>
 
Definitiondf-clim 11080* Define the limit relation for complex number sequences. See clim 11082 for its relational expression. (Contributed by NM, 28-Aug-2005.)
 |-  ~~>  =  { <. f ,  y >.  |  ( y  e. 
 CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
  k )  -  y ) )  < 
 x ) ) }
 
Theoremclimrel 11081 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |- 
 Rel 
 ~~>
 
Theoremclim 11082* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  ZZ )  ->  ( F `  k
 )  =  B )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  ( A  e.  CC  /\ 
 A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclimcl 11083 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  ~~>  A  ->  A  e.  CC )
 
Theoremclim2 11084* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A, with more general quantifier restrictions than clim 11082. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclim2c 11085* Express the predicate  F converges to  A. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( B  -  A ) )  <  x ) )
 
Theoremclim0 11086* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  B )  < 
 x ) ) )
 
Theoremclim0c 11087* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  B )  <  x ) )
 
Theoremclimi 11088* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
 
Theoremclimi2 11089* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( B  -  A ) )  <  C )
 
Theoremclimi0 11090* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  0 )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  B )  <  C )
 
Theoremclimconst 11091* An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  A )   =>    |-  ( ph  ->  F  ~~>  A )
 
Theoremclimconst2 11092 A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ>= `  M )  C_  Z   &    |-  Z  e.  _V   =>    |-  (
 ( A  e.  CC  /\  M  e.  ZZ )  ->  ( Z  X.  { A } )  ~~>  A )
 
Theoremclimz 11093 The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ  X.  {
 0 } )  ~~>  0
 
Theoremclimuni 11094 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( F  ~~>  A  /\  F 
 ~~>  B )  ->  A  =  B )
 
Theoremfclim 11095 The limit relation is function-like, and with range the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ~~>  : dom  ~~>  --> CC
 
Theoremclimdm 11096 Two ways to express that a function has a limit. (The expression  (  ~~>  `  F
) is sometimes useful as a shorthand for "the unique limit of the function  F"). (Contributed by Mario Carneiro, 18-Mar-2014.)
 |-  ( F  e.  dom  ~~>  <->  F  ~~>  ( 
 ~~>  `  F ) )
 
Theoremclimeu 11097* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  F  ~~>  x )
 
Theoremclimreu 11098* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  e.  CC  F  ~~>  x )
 
Theoremclimmo 11099* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
 |- 
 E* x  F  ~~>  x
 
Theoremclimeq 11100* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  G  ~~>  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >