Theorem List for Intuitionistic Logic Explorer - 11001-11100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ffzo0hash 11001 |
The size of a function on a half-open range of nonnegative integers.
(Contributed by Alexander van der Vekens, 25-Mar-2018.)
|
   ..^  ♯    |
| |
| Theorem | fnfzo0hash 11002 |
The size of a function on a half-open range of nonnegative integers equals
the upper bound of this range. (Contributed by Alexander van der Vekens,
26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.)
|
     ..^    ♯    |
| |
| Theorem | hashfacen 11003* |
The number of bijections between two sets is a cardinal invariant.
(Contributed by Mario Carneiro, 21-Jan-2015.)
|
                 |
| |
| Theorem | leisorel 11004 |
Version of isorel 5890 for strictly increasing functions on the
reals.
(Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro,
9-Sep-2015.)
|
    

   
    
       |
| |
| Theorem | zfz1isolemsplit 11005 |
Lemma for zfz1iso 11008. Removing one element from an integer
range.
(Contributed by Jim Kingdon, 8-Sep-2022.)
|
        ♯  
    ♯        ♯      |
| |
| Theorem | zfz1isolemiso 11006* |
Lemma for zfz1iso 11008. Adding one element to the order
isomorphism.
(Contributed by Jim Kingdon, 8-Sep-2022.)
|
              ♯                  ♯        ♯          ♯  
          ♯  
         |
| |
| Theorem | zfz1isolem1 11007* |
Lemma for zfz1iso 11008. Existence of an order isomorphism given
the
existence of shorter isomorphisms. (Contributed by Jim Kingdon,
7-Sep-2022.)
|
       
  
    ♯       
   
       
    ♯       |
| |
| Theorem | zfz1iso 11008* |
A finite set of integers has an order isomorphism to a one-based finite
sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
|
        ♯       |
| |
| Theorem | seq3coll 11009* |
The function contains
a sparse set of nonzero values to be summed.
The function
is an order isomorphism from the set of nonzero
values of to a
1-based finite sequence, and collects these
nonzero values together. Under these conditions, the sum over the
values in
yields the same result as the sum over the original set
. (Contributed
by Mario Carneiro, 2-Apr-2014.) (Revised by Jim
Kingdon, 9-Apr-2023.)
|
          
  
   
         ♯          ♯                
           
              ♯            
   ♯       
                     
      |
| |
| 4.6.10.1 Proper unordered pairs and triples
(sets of size 2 and 3)
|
| |
| Theorem | hash2en 11010 |
Two equivalent ways to say a set has two elements. (Contributed by Jim
Kingdon, 4-Dec-2025.)
|
 
♯     |
| |
| Theorem | hashdmprop2dom 11011 |
A class which contains two ordered pairs with different first components
has at least two elements. (Contributed by AV, 12-Nov-2021.)
|
                          |
| |
| 4.6.10.2 Functions with a domain containing at
least two different elements
|
| |
| Theorem | fundm2domnop0 11012 |
A function with a domain containing (at least) two different elements is
not an ordered pair. This theorem (which requires that
    needs to be a function
instead of ) is useful
for proofs for extensible structures, see structn0fun 12920. (Contributed
by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by
AV, 15-Nov-2021.)
|
     
     |
| |
| Theorem | fundm2domnop 11013 |
A function with a domain containing (at least) two different elements is
not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof
shortened by AV, 9-Jun-2021.)
|
 
     |
| |
| Theorem | fun2dmnop0 11014 |
A function with a domain containing (at least) two different elements is
not an ordered pair. This stronger version of fun2dmnop 11015 (with the
less restrictive requirement that 
   needs to be a
function instead of ) is useful for proofs for extensible
structures, see structn0fun 12920. (Contributed by AV, 21-Sep-2020.)
(Revised by AV, 7-Jun-2021.)
|
              |
| |
| Theorem | fun2dmnop 11015 |
A function with a domain containing (at least) two different elements is
not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Proof
shortened by AV, 9-Jun-2021.)
|
          |
| |
| 4.7 Words over a set
This section is about words (or strings) over a set (alphabet) defined
as finite sequences of symbols (or characters) being elements of the
alphabet. Although it is often required that the underlying set/alphabet be
nonempty, finite and not a proper class, these restrictions are not made in
the current definition df-word 11017. Note that the empty word (i.e.,
the empty set) is the only word over an empty alphabet, see 0wrd0 11042.
The set Word of words over is the free monoid over , where
the monoid law is concatenation and the monoid unit is the empty word.
Besides the definition of words themselves, several operations on words are
defined in this section:
| Name | Reference | Explanation | Example |
Remarks |
| Length (or size) of a word | df-ihash 10943: ♯  |
Operation which determines the number of the symbols
within the word. |
   ..^    Word ♯  |
This is not a special definition for words,
but for arbitrary sets. |
| First symbol of a word | df-fv 5288:     |
Operation which extracts the first symbol of a word. The result is the
symbol at the first place in the sequence representing the word. |
   ..^    Word     |
This is not a special definition for words,
but for arbitrary functions with a half-open range of nonnegative
integers as domain. |
| Last symbol of a word | df-lsw 11061: lastS  |
Operation which extracts the last symbol of a word. The result is the
symbol at the last place in the sequence representing the word. |
   ..^    Word lastS      |
Note that the index of the last symbol is less by 1 than the length of
the word. |
| Subword (or substring) of a word |
df-substr 11122:  substr     |
Operation which extracts a portion of a word. The result is a
consecutive, reindexed part of the sequence representing the word. |
   ..^    Word  substr     Word ♯  substr      |
Note that the last index of the range defining the subword is greater
by 1 than the index of the last symbol of the subword in the sequence
of the original word. |
| Concatenation of two words |
df-concat 11070:  ++  |
Operation combining two words to one new word. The result is a
combined, reindexed sequence build from the sequences representing
the two words. |
 Word Word  ♯  ++    ♯  ♯   |
Note that the index of the first symbol of the second concatenated
word is the length of the first word in the concatenation. |
| Singleton word |
df-s1 11093:     |
Constructor building a word of length 1 from a symbol. |
♯      |
|
Conventions:
- Words are usually represented by class variable
, or if two words
are involved, by and or by and .
- The alphabets are usually represented by class variable
(because
any arbitrary set can be an alphabet), sometimes also by (especially
as codomain of the function representing a word, because the alphabet is the
set of symbols).
- The symbols are usually represented by class variables
or ,
or if two symbols are involved, by and or by and .
- The indices of the sequence representing a word are usually represented
by class variable
, if two indices are involved (especially for
subwords) by and , or by and .
- The length of a word is usually represented by class variables
or .
- The number of positions by which to cyclically shift a word is usually
represented by class variables
or .
|
| |
| 4.7.1 Definitions and basic
theorems
|
| |
| Syntax | cword 11016 |
Syntax for the Word operator.
|
Word  |
| |
| Definition | df-word 11017* |
Define the class of words over a set. A word (sometimes also called a
string) is a finite sequence of symbols from a set (alphabet)
.
Definition in Section 9.1 of [AhoHopUll] p. 318. The domain is forced
to be an initial segment of so that two words with the same
symbols in the same order be equal. The set Word is sometimes
denoted by S*, using the Kleene star, although the Kleene star, or
Kleene closure, is sometimes reserved to denote an operation on
languages. The set Word equipped with concatenation is the free
monoid over ,
and the monoid unit is the empty word. (Contributed
by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 14-Aug-2015.) (Revised
by Mario Carneiro, 26-Feb-2016.)
|
Word
     ..^     |
| |
| Theorem | iswrd 11018* |
Property of being a word over a set with an existential quantifier over
the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by
Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
|
 Word     ..^     |
| |
| Theorem | wrdval 11019* |
Value of the set of words over a set. (Contributed by Stefan O'Rear,
10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
 Word    ..^    |
| |
| Theorem | lencl 11020 |
The length of a word is a nonnegative integer. This corresponds to the
definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan
O'Rear, 27-Aug-2015.)
|
 Word ♯    |
| |
| Theorem | iswrdinn0 11021 |
A zero-based sequence is a word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by
Jim Kingdon, 16-Aug-2025.)
|
     ..^   
Word   |
| |
| Theorem | wrdf 11022 |
A word is a zero-based sequence with a recoverable upper limit.
(Contributed by Stefan O'Rear, 15-Aug-2015.)
|
 Word    ..^ ♯       |
| |
| Theorem | iswrdiz 11023 |
A zero-based sequence is a word. In iswrdinn0 11021 we can specify a length
as an nonnegative integer. However, it will occasionally be helpful to
allow a negative length, as well as zero, to specify an empty sequence.
(Contributed by Jim Kingdon, 18-Aug-2025.)
|
     ..^   
Word   |
| |
| Theorem | wrddm 11024 |
The indices of a word (i.e. its domain regarded as function) are elements
of an open range of nonnegative integers (of length equal to the length of
the word). (Contributed by AV, 2-May-2020.)
|
 Word  ..^ ♯     |
| |
| Theorem | sswrd 11025 |
The set of words respects ordering on the base set. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(Proof shortened by AV, 13-May-2020.)
|
 Word
Word   |
| |
| Theorem | snopiswrd 11026 |
A singleton of an ordered pair (with 0 as first component) is a word.
(Contributed by AV, 23-Nov-2018.) (Proof shortened by AV,
18-Apr-2021.)
|
      Word
  |
| |
| Theorem | wrdexg 11027 |
The set of words over a set is a set. (Contributed by Mario Carneiro,
26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
|
 Word   |
| |
| Theorem | wrdexb 11028 |
The set of words over a set is a set, bidirectional version.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV,
23-Nov-2018.)
|
 Word   |
| |
| Theorem | wrdexi 11029 |
The set of words over a set is a set, inference form. (Contributed by
AV, 23-May-2021.)
|
Word
 |
| |
| Theorem | wrdsymbcl 11030 |
A symbol within a word over an alphabet belongs to the alphabet.
(Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
  Word  ..^ ♯          |
| |
| Theorem | wrdfn 11031 |
A word is a function with a zero-based sequence of integers as domain.
(Contributed by Alexander van der Vekens, 13-Apr-2018.)
|
 Word  ..^ ♯     |
| |
| Theorem | wrdv 11032 |
A word over an alphabet is a word over the universal class. (Contributed
by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.)
|
 Word Word
  |
| |
| Theorem | wrdlndm 11033 |
The length of a word is not in the domain of the word (regarded as a
function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ,
18-Nov-2022.)
|
 Word ♯    |
| |
| Theorem | iswrdsymb 11034* |
An arbitrary word is a word over an alphabet if all of its symbols
belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
|
  Word   ..^ ♯       
 Word   |
| |
| Theorem | wrdfin 11035 |
A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.)
(Proof shortened by AV, 18-Nov-2018.)
|
 Word   |
| |
| Theorem | lennncl 11036 |
The length of a nonempty word is a positive integer. (Contributed by
Mario Carneiro, 1-Oct-2015.)
|
  Word  ♯    |
| |
| Theorem | wrdffz 11037 |
A word is a function from a finite interval of integers. (Contributed by
AV, 10-Feb-2021.)
|
 Word       ♯        |
| |
| Theorem | wrdeq 11038 |
Equality theorem for the set of words. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
 Word Word
  |
| |
| Theorem | wrdeqi 11039 |
Equality theorem for the set of words, inference form. (Contributed by
AV, 23-May-2021.)
|
Word
Word  |
| |
| Theorem | iswrddm0 11040 |
A function with empty domain is a word. (Contributed by AV,
13-Oct-2018.)
|
     Word
  |
| |
| Theorem | wrd0 11041 |
The empty set is a word (the empty word, frequently denoted ε in
this context). This corresponds to the definition in Section 9.1 of
[AhoHopUll] p. 318. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 13-May-2020.)
|
Word  |
| |
| Theorem | 0wrd0 11042 |
The empty word is the only word over an empty alphabet. (Contributed by
AV, 25-Oct-2018.)
|
 Word
  |
| |
| Theorem | wrdsymb 11043 |
A word is a word over the symbols it consists of. (Contributed by AV,
1-Dec-2022.)
|
 Word Word
    ..^ ♯      |
| |
| Theorem | nfwrd 11044 |
Hypothesis builder for Word . (Contributed by Mario Carneiro,
26-Feb-2016.)
|
   Word  |
| |
| Theorem | csbwrdg 11045* |
Class substitution for the symbols of a word. (Contributed by Alexander
van der Vekens, 15-Jul-2018.)
|
   Word Word
  |
| |
| Theorem | wrdnval 11046* |
Words of a fixed length are mappings from a fixed half-open integer
interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
(Proof shortened by AV, 13-May-2020.)
|
    Word
♯ 
   ..^    |
| |
| Theorem | wrdmap 11047 |
Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
|
     Word
♯ 
   ..^     |
| |
| Theorem | wrdsymb0 11048 |
A symbol at a position "outside" of a word. (Contributed by
Alexander van
der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
|
  Word    ♯  
       |
| |
| Theorem | wrdlenge1n0 11049 |
A word with length at least 1 is not empty. (Contributed by AV,
14-Oct-2018.)
|
 Word  ♯     |
| |
| Theorem | len0nnbi 11050 |
The length of a word is a positive integer iff the word is not empty.
(Contributed by AV, 22-Mar-2022.)
|
 Word  ♯     |
| |
| Theorem | wrdlenge2n0 11051 |
A word with length at least 2 is not empty. (Contributed by AV,
18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
|
  Word ♯     |
| |
| Theorem | wrdsymb1 11052 |
The first symbol of a nonempty word over an alphabet belongs to the
alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
  Word ♯         |
| |
| Theorem | wrdlen1 11053* |
A word of length 1 starts with a symbol. (Contributed by AV,
20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
|
  Word ♯   
      |
| |
| Theorem | fstwrdne 11054 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
  Word        |
| |
| Theorem | fstwrdne0 11055 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
   Word ♯          |
| |
| Theorem | eqwrd 11056* |
Two words are equal iff they have the same length and the same symbol at
each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ,
30-Dec-2023.)
|
  Word Word    ♯ 
♯    ..^ ♯                |
| |
| Theorem | elovmpowrd 11057* |
Implications for the value of an operation defined by the maps-to
notation with a class abstraction of words as a result having an
element. Note that may depend on as well as on and
. (Contributed
by Alexander van der Vekens, 15-Jul-2018.)
|
   Word        
Word    |
| |
| Theorem | wrdred1 11058 |
A word truncated by a symbol is a word. (Contributed by AV,
29-Jan-2021.)
|
 Word   ..^ ♯     Word
  |
| |
| Theorem | wrdred1hash 11059 |
The length of a word truncated by a symbol. (Contributed by Alexander van
der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
|
  Word ♯   ♯   ..^ ♯       ♯     |
| |
| 4.7.2 Last symbol of a word
|
| |
| Syntax | clsw 11060 |
Extend class notation with the Last Symbol of a word.
|
lastS |
| |
| Definition | df-lsw 11061 |
Extract the last symbol of a word. May be not meaningful for other sets
which are not words. The name lastS (as abbreviation of
"lastSymbol")
is a compromise between usually used names for corresponding functions in
computer programs (as last() or lastChar()), the terminology used for
words in set.mm ("symbol" instead of "character") and
brevity ("lastS" is
shorter than "lastChar" and "lastSymbol"). Labels of
theorems about last
symbols of a word will contain the abbreviation "lsw" (Last
Symbol of a
Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
|
lastS      ♯      |
| |
| Theorem | lswwrd 11062 |
Extract the last symbol of a word. (Contributed by Alexander van der
Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
|
 Word lastS      ♯      |
| |
| Theorem | lsw0 11063 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV,
2-May-2020.)
|
  Word ♯   lastS    |
| |
| Theorem | lsw0g 11064 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 11-Nov-2018.)
|
lastS   |
| |
| Theorem | lsw1 11065 |
The last symbol of a word of length 1 is the first symbol of this word.
(Contributed by Alexander van der Vekens, 19-Mar-2018.)
|
  Word ♯   lastS        |
| |
| Theorem | lswcl 11066 |
Closure of the last symbol: the last symbol of a nonempty word belongs to
the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
  Word  lastS    |
| |
| Theorem | lswex 11067 |
Existence of the last symbol. The last symbol of a word is a set. See
lsw0g 11064 or lswcl 11066 if you want more specific results
for empty or
nonempty words, respectively. (Contributed by Jim Kingdon,
27-Dec-2025.)
|
 Word lastS    |
| |
| Theorem | lswlgt0cl 11068 |
The last symbol of a nonempty word is an element of the alphabet for the
word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
   Word ♯    lastS    |
| |
| 4.7.3 Concatenations of words
|
| |
| Syntax | cconcat 11069 |
Syntax for the concatenation operator.
|
++ |
| |
| Definition | df-concat 11070* |
Define the concatenation operator which combines two words. Definition
in Section 9.1 of [AhoHopUll] p. 318.
(Contributed by FL, 14-Jan-2014.)
(Revised by Stefan O'Rear, 15-Aug-2015.)
|
++     ..^ ♯  ♯       ..^ ♯             ♯        |
| |
| Theorem | ccatfvalfi 11071* |
Value of the concatenation operator. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
    ++    ..^ ♯  ♯       ..^ ♯             ♯        |
| |
| Theorem | ccatcl 11072 |
The concatenation of two words is a word. (Contributed by FL,
2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 29-Apr-2020.)
|
  Word Word   ++ 
Word   |
| |
| Theorem | ccatclab 11073 |
The concatenation of words over two sets is a word over the union of
those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
|
  Word Word   ++ 
Word     |
| |
| Theorem | ccatlen 11074 |
The length of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
|
  Word Word  ♯  ++    ♯  ♯     |
| |
| Theorem | ccat0 11075 |
The concatenation of two words is empty iff the two words are empty.
(Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
|
  Word Word    ++  
    |
| |
| Theorem | ccatval1 11076 |
Value of a symbol in the left half of a concatenated word. (Contributed
by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro,
22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ,
18-Jan-2024.)
|
  Word Word
 ..^ ♯      ++           |
| |
| Theorem | ccatval2 11077 |
Value of a symbol in the right half of a concatenated word.
(Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario
Carneiro, 22-Sep-2015.)
|
  Word Word
 ♯  ..^ ♯  ♯       ++         ♯      |
| |
| Theorem | ccatval3 11078 |
Value of a symbol in the right half of a concatenated word, using an
index relative to the subword. (Contributed by Stefan O'Rear,
16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
|
  Word Word
 ..^ ♯      ++     ♯          |
| |
| Theorem | elfzelfzccat 11079 |
An element of a finite set of sequential integers up to the length of a
word is an element of an extended finite set of sequential integers up to
the length of a concatenation of this word with another word.
(Contributed by Alexander van der Vekens, 28-Mar-2018.)
|
  Word Word      ♯  
   ♯  ++       |
| |
| Theorem | ccatvalfn 11080 |
The concatenation of two words is a function over the half-open integer
range having the sum of the lengths of the word as length. (Contributed
by Alexander van der Vekens, 30-Mar-2018.)
|
  Word Word   ++   ..^ ♯  ♯      |
| |
| Theorem | ccatsymb 11081 |
The symbol at a given position in a concatenated word. (Contributed by
AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
|
  Word Word
   ++       ♯            ♯       |
| |
| Theorem | ccatfv0 11082 |
The first symbol of a concatenation of two words is the first symbol of
the first word if the first word is not empty. (Contributed by Alexander
van der Vekens, 22-Sep-2018.)
|
  Word Word
♯  
  ++    
      |
| |
| Theorem | ccatval1lsw 11083 |
The last symbol of the left (nonempty) half of a concatenated word.
(Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened
by AV, 1-May-2020.)
|
  Word Word    ++     ♯    lastS    |
| |
| Theorem | ccatval21sw 11084 |
The first symbol of the right (nonempty) half of a concatenated word.
(Contributed by AV, 23-Apr-2022.)
|
  Word Word    ++    ♯  
      |
| |
| Theorem | ccatlid 11085 |
Concatenation of a word by the empty word on the left. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
 Word 
++    |
| |
| Theorem | ccatrid 11086 |
Concatenation of a word by the empty word on the right. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
 Word  ++    |
| |
| Theorem | ccatass 11087 |
Associative law for concatenation of words. (Contributed by Stefan
O'Rear, 15-Aug-2015.)
|
  Word Word Word
   ++  ++   ++  ++     |
| |
| Theorem | ccatrn 11088 |
The range of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
  Word Word 
 ++      |
| |
| Theorem | ccatidid 11089 |
Concatenation of the empty word by the empty word. (Contributed by AV,
26-Mar-2022.)
|

++   |
| |
| Theorem | lswccatn0lsw 11090 |
The last symbol of a word concatenated with a nonempty word is the last
symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof
shortened by AV, 1-May-2020.)
|
  Word Word  lastS  ++  
lastS    |
| |
| Theorem | lswccat0lsw 11091 |
The last symbol of a word concatenated with the empty word is the last
symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened
by AV, 1-May-2020.)
|
 Word lastS  ++   lastS    |
| |
| 4.7.4 Singleton words
|
| |
| Syntax | cs1 11092 |
Syntax for the singleton word constructor.
|
     |
| |
| Definition | df-s1 11093 |
Define the canonical injection from symbols to words. Although not
required, should
usually be a set. Otherwise, the singleton word
    would be the singleton word consisting of the empty set, see
s1prc 11100, and not, as maybe expected, the empty word.
(Contributed by
Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
            |
| |
| Theorem | s1val 11094 |
Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
            |
| |
| Theorem | s1rn 11095 |
The range of a singleton word. (Contributed by Mario Carneiro,
18-Jul-2016.)
|
         |
| |
| Theorem | s1eq 11096 |
Equality theorem for a singleton word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
           |
| |
| Theorem | s1eqd 11097 |
Equality theorem for a singleton word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
             |
| |
| Theorem | s1cl 11098 |
A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV,
23-Nov-2018.)
|
     Word   |
| |
| Theorem | s1cld 11099 |
A singleton word is a word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
       Word
  |
| |
| Theorem | s1prc 11100 |
Value of a singleton word if the symbol is a proper class. (Contributed
by AV, 26-Mar-2022.)
|
           |