HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 153)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremimaddd 11001 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  +  B ) )  =  ( ( Im
 `  A )  +  ( Im `  B ) ) )
 
Theoremresubd 11002 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  -  B ) )  =  ( ( Re
 `  A )  -  ( Re `  B ) ) )
 
Theoremimsubd 11003 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  -  B ) )  =  ( ( Im
 `  A )  -  ( Im `  B ) ) )
 
Theoremremuld 11004 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremimmuld 11005 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
 
Theoremcjaddd 11006 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  ( A  +  B ) )  =  ( ( * `
  A )  +  ( * `  B ) ) )
 
Theoremcjmuld 11007 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) )
 
Theoremipcnd 11008 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremcjdivapd 11009 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( * `  ( A  /  B ) )  =  ( ( * `  A ) 
 /  ( * `  B ) ) )
 
Theoremrered 11010 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( Re `  A )  =  A )
 
Theoremreim0d 11011 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( Im `  A )  =  0 )
 
Theoremcjred 11012 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( * `  A )  =  A )
 
Theoremremul2d 11013 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremimmul2d 11014 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremredivapd 11015 Real part of a division. Related to remul2 10914. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Re `  ( B  /  A ) )  =  ( ( Re `  B ) 
 /  A ) )
 
Theoremimdivapd 11016 Imaginary part of a division. Related to remul2 10914. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Im `  ( B  /  A ) )  =  ( ( Im `  B ) 
 /  A ) )
 
Theoremcrred 11017 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrimd 11018 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremcnreim 11019 Complex apartness in terms of real and imaginary parts. See also apreim 8590 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
4.7.3  Sequence convergence
 
Theoremcaucvgrelemrec 11020* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( iota_ r  e.  RR  ( A  x.  r
 )  =  1 )  =  ( 1  /  A ) )
 
Theoremcaucvgrelemcau 11021* Lemma for caucvgre 11022. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )
 
Theoremcaucvgre 11022* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `
  i )  +  x ) ) )
 
Theoremcvg1nlemcxze 11023 Lemma for cvg1n 11027. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  X  e.  RR+ )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  E  e.  NN )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A )  <  E )   =>    |-  ( ph  ->  ( C  /  ( E  x.  Z ) )  < 
 ( X  /  2
 ) )
 
Theoremcvg1nlemf 11024* Lemma for cvg1n 11027. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  G : NN --> RR )
 
Theoremcvg1nlemcau 11025* Lemma for cvg1n 11027. By selecting spaced out terms for the modified sequence  G, the terms are within  1  /  n (without the constant  C). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( G `  n )  <  ( ( G `  k )  +  ( 1  /  n ) )  /\  ( G `  k )  <  ( ( G `
  n )  +  ( 1  /  n ) ) ) )
 
Theoremcvg1nlemres 11026* Lemma for cvg1n 11027. The original sequence  F has a limit (turns out it is the same as the limit of the modified sequence  G). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremcvg1n 11027* Convergence of real sequences.

This is a version of caucvgre 11022 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremuzin2 11028 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( A  e.  ran  ZZ>= 
 /\  B  e.  ran  ZZ>= )  ->  ( A  i^i  B )  e.  ran  ZZ>= )
 
Theoremrexanuz 11029* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
 |-  ( E. j  e. 
 ZZ  A. k  e.  ( ZZ>=
 `  j ) (
 ph  /\  ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremrexfiuz 11030* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexuz3 11031* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph 
 <-> 
 E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexanuz2 11032* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremr19.29uz 11033* A version of 19.29 1631 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( A. k  e.  Z  ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )
 )
 
Theoremr19.2uz 11034* A version of r19.2m 3524 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
 
Theoremrecvguniqlem 11035 Lemma for recvguniq 11036. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  A  <  (
 ( F `  K )  +  ( ( A  -  B )  / 
 2 ) ) )   &    |-  ( ph  ->  ( F `  K )  <  ( B  +  ( ( A  -  B )  / 
 2 ) ) )   =>    |-  ( ph  -> F.  )
 
Theoremrecvguniq 11036* Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e. 
 NN  A. k  e.  ( ZZ>=
 `  j ) ( ( F `  k
 )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e. 
 NN  A. k  e.  ( ZZ>=
 `  j ) ( ( F `  k
 )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) )   =>    |-  ( ph  ->  L  =  M )
 
4.7.4  Square root; absolute value
 
Syntaxcsqrt 11037 Extend class notation to include square root of a complex number.
 class  sqr
 
Syntaxcabs 11038 Extend class notation to include a function for the absolute value (modulus) of a complex number.
 class  abs
 
Definitiondf-rsqrt 11039* Define a function whose value is the square root of a nonnegative real number.

Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root.

(Contributed by Jim Kingdon, 23-Aug-2020.)

 |- 
 sqr  =  ( x  e.  RR  |->  ( iota_ y  e. 
 RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
 
Definitiondf-abs 11040 Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.)
 |- 
 abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
 
Theoremsqrtrval 11041* Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
 |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e. 
 RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
 
Theoremabsval 11042 The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
 
Theoremrennim 11043 A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
 |-  ( A  e.  RR  ->  ( _i  x.  A )  e/  RR+ )
 
Theoremsqrt0rlem 11044 Lemma for sqrt0 11045. (Contributed by Jim Kingdon, 26-Aug-2020.)
 |-  ( ( A  e.  RR  /\  ( ( A ^ 2 )  =  0  /\  0  <_  A ) )  <->  A  =  0
 )
 
Theoremsqrt0 11045 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( sqr `  0
 )  =  0
 
Theoremresqrexlem1arp 11046 Lemma for resqrex 11067.  1  +  A is a positive real (expressed in a way that will help apply seqf 10492 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( NN  X.  {
 ( 1  +  A ) } ) `  N )  e.  RR+ )
 
Theoremresqrexlemp1rp 11047* Lemma for resqrex 11067. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10492 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ( ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) C )  e.  RR+ )
 
Theoremresqrexlemf 11048* Lemma for resqrex 11067. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  F : NN --> RR+ )
 
Theoremresqrexlemf1 11049* Lemma for resqrex 11067. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  ( F `  1 )  =  ( 1  +  A ) )
 
Theoremresqrexlemfp1 11050* Lemma for resqrex 11067. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  ( F `  ( N  +  1 ) )  =  ( ( ( F `
  N )  +  ( A  /  ( F `  N ) ) )  /  2 ) )
 
Theoremresqrexlemover 11051* Lemma for resqrex 11067. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  A  <  ( ( F `  N ) ^ 2
 ) )
 
Theoremresqrexlemdec 11052* Lemma for resqrex 11067. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  ( F `  ( N  +  1 ) )  < 
 ( F `  N ) )
 
Theoremresqrexlemdecn 11053* Lemma for resqrex 11067. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( F `  M )  < 
 ( F `  N ) )
 
Theoremresqrexlemlo 11054* Lemma for resqrex 11067. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 1  /  ( 2 ^ N ) )  < 
 ( F `  N ) )
 
Theoremresqrexlemcalc1 11055* Lemma for resqrex 11067. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  ( N  +  1
 ) ) ^ 2
 )  -  A )  =  ( ( ( ( ( F `  N ) ^ 2
 )  -  A ) ^ 2 )  /  ( 4  x.  (
 ( F `  N ) ^ 2 ) ) ) )
 
Theoremresqrexlemcalc2 11056* Lemma for resqrex 11067. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  ( N  +  1
 ) ) ^ 2
 )  -  A ) 
 <_  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
 ) )
 
Theoremresqrexlemcalc3 11057* Lemma for resqrex 11067. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  N ) ^ 2
 )  -  A ) 
 <_  ( ( ( F `
  1 ) ^
 2 )  /  (
 4 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemnmsq 11058* Lemma for resqrex 11067. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <_  M )   =>    |-  ( ph  ->  (
 ( ( F `  N ) ^ 2
 )  -  ( ( F `  M ) ^ 2 ) )  <  ( ( ( F `  1 ) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemnm 11059* Lemma for resqrex 11067. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <_  M )   =>    |-  ( ph  ->  (
 ( F `  N )  -  ( F `  M ) )  < 
 ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
 2 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemcvg 11060* Lemma for resqrex 11067. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( r  +  x )  /\  r  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremresqrexlemgt0 11061* Lemma for resqrex 11067. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   =>    |-  ( ph  ->  0  <_  L )
 
Theoremresqrexlemoverl 11062* Lemma for resqrex 11067. Every term in the sequence is an overestimate compared with the limit 
L. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  ( ph  ->  K  e.  NN )   =>    |-  ( ph  ->  L  <_  ( F `  K ) )
 
Theoremresqrexlemglsq 11063* Lemma for resqrex 11067. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  G  =  ( x  e.  NN  |->  ( ( F `
  x ) ^
 2 ) )   =>    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
 ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  <  ( ( G `
  k )  +  e ) ) )
 
Theoremresqrexlemga 11064* Lemma for resqrex 11067. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  G  =  ( x  e.  NN  |->  ( ( F `
  x ) ^
 2 ) )   =>    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
 ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `
  k )  +  e ) ) )
 
Theoremresqrexlemsqa 11065* Lemma for resqrex 11067. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   =>    |-  ( ph  ->  ( L ^ 2 )  =  A )
 
Theoremresqrexlemex 11066* Lemma for resqrex 11067. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
 2 )  =  A ) )
 
Theoremresqrex 11067* Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2
 )  =  A ) )
 
Theoremrsqrmo 11068* Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E* x  e.  RR  ( ( x ^
 2 )  =  A  /\  0  <_  x ) )
 
Theoremrersqreu 11069* Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e. 
 RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )
 
Theoremresqrtcl 11070 Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  A )  e.  RR )
 
Theoremrersqrtthlem 11071 Lemma for resqrtth 11072. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( ( sqr `  A ) ^ 2 )  =  A  /\  0  <_  ( sqr `  A )
 ) )
 
Theoremresqrtth 11072 Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A ) ^ 2
 )  =  A )
 
Theoremremsqsqrt 11073 Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A )  x.  ( sqr `  A ) )  =  A )
 
Theoremsqrtge0 11074 The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  0  <_  ( sqr `  A ) )
 
Theoremsqrtgt0 11075 The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  0  <  ( sqr `  A ) )
 
Theoremsqrtmul 11076 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( sqr `  ( A  x.  B ) )  =  ( ( sqr `  A )  x.  ( sqr `  B ) ) )
 
Theoremsqrtle 11077 Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <_  B  <->  ( sqr `  A )  <_  ( sqr `  B ) ) )
 
Theoremsqrtlt 11078 Square root is strictly monotonic. Closed form of sqrtlti 11178. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <  B  <->  ( sqr `  A )  <  ( sqr `  B ) ) )
 
Theoremsqrt11ap 11079 Analogue to sqrt11 11080 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( sqr `  A ) #  ( sqr `  B ) 
 <->  A #  B ) )
 
Theoremsqrt11 11080 The square root function is one-to-one. Also see sqrt11ap 11079 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( sqr `  A )  =  ( sqr `  B )  <->  A  =  B ) )
 
Theoremsqrt00 11081 A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A )  =  0  <->  A  =  0 )
 )
 
Theoremrpsqrtcl 11082 The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.)
 |-  ( A  e.  RR+  ->  ( sqr `  A )  e.  RR+ )
 
Theoremsqrtdiv 11083 Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )
 
Theoremsqrtsq2 11084 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( sqr `  A )  =  B  <->  A  =  ( B ^ 2 ) ) )
 
Theoremsqrtsq 11085 Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  ( A ^ 2 ) )  =  A )
 
Theoremsqrtmsq 11086 Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  ( A  x.  A ) )  =  A )
 
Theoremsqrt1 11087 The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.)
 |-  ( sqr `  1
 )  =  1
 
Theoremsqrt4 11088 The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.)
 |-  ( sqr `  4
 )  =  2
 
Theoremsqrt9 11089 The square root of 9 is 3. (Contributed by NM, 11-May-2004.)
 |-  ( sqr `  9
 )  =  3
 
Theoremsqrt2gt1lt2 11090 The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  ( 1  <  ( sqr `  2 )  /\  ( sqr `  2 )  <  2 )
 
Theoremabsneg 11091 Absolute value of negative. (Contributed by NM, 27-Feb-2005.)
 |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A ) )
 
Theoremabscl 11092 Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
 |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
 
Theoremabscj 11093 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
 |-  ( A  e.  CC  ->  ( abs `  ( * `  A ) )  =  ( abs `  A ) )
 
Theoremabsvalsq 11094 Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) ^ 2 )  =  ( A  x.  ( * `  A ) ) )
 
Theoremabsvalsq2 11095 Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) ^ 2 )  =  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremsqabsadd 11096 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B ) ) ^ 2
 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) ) )
 
Theoremsqabssub 11097 Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B ) ) ^ 2
 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) ) )
 
Theoremabsval2 11098 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.)
 |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) ) )
 
Theoremabs0 11099 The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( abs `  0
 )  =  0
 
Theoremabsi 11100 The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
 |-  ( abs `  _i )  =  1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15291
  Copyright terms: Public domain < Previous  Next >