HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremabsi 11001 The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
 |-  ( abs `  _i )  =  1
 
Theoremabsge0 11002 Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( A  e.  CC  ->  0  <_  ( abs `  A ) )
 
Theoremabsrpclap 11003 The absolute value of a number apart from zero is a positive real. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( abs `  A )  e.  RR+ )
 
Theoremabs00ap 11004 The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) #  0  <->  A #  0 )
 )
 
Theoremabsext 11005 Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A ) #  ( abs `  B )  ->  A #  B ) )
 
Theoremabs00 11006 The absolute value of a number is zero iff the number is zero. Also see abs00ap 11004 which is similar but for apartness. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( A  e.  CC  ->  ( ( abs `  A )  =  0  <->  A  =  0
 ) )
 
Theoremabs00ad 11007 A complex number is zero iff its absolute value is zero. Deduction form of abs00 11006. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 ( abs `  A )  =  0  <->  A  =  0
 ) )
 
Theoremabs00bd 11008 If a complex number is zero, its absolute value is zero. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  =  0 )   =>    |-  ( ph  ->  ( abs `  A )  =  0 )
 
Theoremabsreimsq 11009 Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
 
Theoremabsreim 11010 Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  =  ( sqr `  (
 ( A ^ 2
 )  +  ( B ^ 2 ) ) ) )
 
Theoremabsmul 11011 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  B ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
 
Theoremabsdivap 11012 Absolute value distributes over division. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( abs `  ( A  /  B ) )  =  ( ( abs `  A )  /  ( abs `  B ) ) )
 
Theoremabsid 11013 A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( abs `  A )  =  A )
 
Theoremabs1 11014 The absolute value of 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
 |-  ( abs `  1
 )  =  1
 
Theoremabsnid 11015 A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005.)
 |-  ( ( A  e.  RR  /\  A  <_  0
 )  ->  ( abs `  A )  =  -u A )
 
Theoremleabs 11016 A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
 |-  ( A  e.  RR  ->  A  <_  ( abs `  A ) )
 
Theoremqabsor 11017 The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.)
 |-  ( A  e.  QQ  ->  ( ( abs `  A )  =  A  \/  ( abs `  A )  =  -u A ) )
 
Theoremqabsord 11018 The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.)
 |-  ( ph  ->  A  e.  QQ )   =>    |-  ( ph  ->  (
 ( abs `  A )  =  A  \/  ( abs `  A )  =  -u A ) )
 
Theoremabsre 11019 Absolute value of a real number. (Contributed by NM, 17-Mar-2005.)
 |-  ( A  e.  RR  ->  ( abs `  A )  =  ( sqr `  ( A ^ 2
 ) ) )
 
Theoremabsresq 11020 Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.)
 |-  ( A  e.  RR  ->  ( ( abs `  A ) ^ 2 )  =  ( A ^ 2
 ) )
 
Theoremabsexp 11021 Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N ) )
 
Theoremabsexpzap 11022 Absolute value of integer exponentiation. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N ) )
 
Theoremabssq 11023 Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) ^ 2 )  =  ( abs `  ( A ^ 2 ) ) )
 
Theoremsqabs 11024 The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ^ 2 )  =  ( B ^ 2
 ) 
 <->  ( abs `  A )  =  ( abs `  B ) ) )
 
Theoremabsrele 11025 The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.)
 |-  ( A  e.  CC  ->  ( abs `  ( Re `  A ) ) 
 <_  ( abs `  A ) )
 
Theoremabsimle 11026 The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( A  e.  CC  ->  ( abs `  ( Im `  A ) ) 
 <_  ( abs `  A ) )
 
Theoremnn0abscl 11027 The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.)
 |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  NN0 )
 
Theoremzabscl 11028 The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.)
 |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  ZZ )
 
Theoremltabs 11029 A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( A  e.  RR  /\  A  <  ( abs `  A ) ) 
 ->  A  <  0 )
 
Theoremabslt 11030 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A )  <  B  <->  (
 -u B  <  A  /\  A  <  B ) ) )
 
Theoremabsle 11031 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A )  <_  B  <->  (
 -u B  <_  A  /\  A  <_  B )
 ) )
 
Theoremabssubap0 11032 If the absolute value of a complex number is less than a real, its difference from the real is apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  ( abs `  A )  <  B )  ->  ( B  -  A ) #  0 )
 
Theoremabssubne0 11033 If the absolute value of a complex number is less than a real, its difference from the real is nonzero. See also abssubap0 11032 which is the same with not equal changed to apart. (Contributed by NM, 2-Nov-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  ( abs `  A )  <  B )  ->  ( B  -  A )  =/=  0 )
 
Theoremabsdiflt 11034 The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( abs `  ( A  -  B ) )  <  C  <->  ( ( B  -  C )  <  A  /\  A  <  ( B  +  C )
 ) ) )
 
Theoremabsdifle 11035 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( abs `  ( A  -  B ) ) 
 <_  C  <->  ( ( B  -  C )  <_  A  /\  A  <_  ( B  +  C )
 ) ) )
 
Theoremelicc4abs 11036 Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  (
 ( A  -  B ) [,] ( A  +  B ) )  <->  ( abs `  ( C  -  A ) ) 
 <_  B ) )
 
Theoremlenegsq 11037 Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <_  B )  ->  ( ( A  <_  B 
 /\  -u A  <_  B ) 
 <->  ( A ^ 2
 )  <_  ( B ^ 2 ) ) )
 
Theoremreleabs 11038 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.)
 |-  ( A  e.  CC  ->  ( Re `  A )  <_  ( abs `  A ) )
 
Theoremrecvalap 11039 Reciprocal expressed with a real denominator. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  A )  =  ( ( * `  A )  /  ( ( abs `  A ) ^ 2 ) ) )
 
Theoremabsidm 11040 The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.)
 |-  ( A  e.  CC  ->  ( abs `  ( abs `  A ) )  =  ( abs `  A ) )
 
Theoremabsgt0ap 11041 The absolute value of a number apart from zero is positive. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  0  <  ( abs `  A ) ) )
 
Theoremnnabscl 11042 The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ( N  e.  ZZ  /\  N  =/=  0
 )  ->  ( abs `  N )  e.  NN )
 
Theoremabssub 11043 Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B ) )  =  ( abs `  ( B  -  A ) ) )
 
Theoremabssubge0 11044 Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( abs `  ( B  -  A ) )  =  ( B  -  A ) )
 
Theoremabssuble0 11045 Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( abs `  ( A  -  B ) )  =  ( B  -  A ) )
 
Theoremabstri 11046 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
 )  <_  ( ( abs `  A )  +  ( abs `  B )
 ) )
 
Theoremabs3dif 11047 Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  ( A  -  B ) ) 
 <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( C  -  B ) ) ) )
 
Theoremabs2dif 11048 Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A )  -  ( abs `  B ) ) 
 <_  ( abs `  ( A  -  B ) ) )
 
Theoremabs2dif2 11049 Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B ) ) 
 <_  ( ( abs `  A )  +  ( abs `  B ) ) )
 
Theoremabs2difabs 11050 Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
 ( abs `  A )  -  ( abs `  B ) ) )  <_  ( abs `  ( A  -  B ) ) )
 
Theoremrecan 11051* Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B ) )  <->  A  =  B ) )
 
Theoremabsf 11052 Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |- 
 abs : CC --> RR
 
Theoremabs3lem 11053 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  RR ) )  ->  ( ( ( abs `  ( A  -  C ) )  <  ( D 
 /  2 )  /\  ( abs `  ( C  -  B ) )  < 
 ( D  /  2
 ) )  ->  ( abs `  ( A  -  B ) )  <  D ) )
 
Theoremfzomaxdiflem 11054 Lemma for fzomaxdif 11055. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  ->  ( abs `  ( B  -  A ) )  e.  ( 0..^ ( D  -  C ) ) )
 
Theoremfzomaxdif 11055 A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( abs `  ( A  -  B ) )  e.  ( 0..^ ( D  -  C ) ) )
 
Theoremcau3lem 11056* Lemma for cau3 11057. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
 |-  Z  C_  ZZ   &    |-  ( ta  ->  ps )   &    |-  ( ( F `
  k )  =  ( F `  j
 )  ->  ( ps  <->  ch ) )   &    |-  ( ( F `
  k )  =  ( F `  m )  ->  ( ps  <->  th ) )   &    |-  (
 ( ph  /\  ch  /\  ps )  ->  ( G `  ( ( F `  j ) D ( F `  k ) ) )  =  ( G `  ( ( F `  k ) D ( F `  j ) ) ) )   &    |-  ( ( ph  /\ 
 th  /\  ch )  ->  ( G `  (
 ( F `  m ) D ( F `  j ) ) )  =  ( G `  ( ( F `  j ) D ( F `  m ) ) ) )   &    |-  (
 ( ph  /\  ( ps 
 /\  th )  /\  ( ch  /\  x  e.  RR ) )  ->  ( ( ( G `  (
 ( F `  k
 ) D ( F `
  j ) ) )  <  ( x 
 /  2 )  /\  ( G `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
 2 ) )  ->  ( G `  ( ( F `  k ) D ( F `  m ) ) )  <  x ) )   =>    |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ta  /\  ( G `  ( ( F `
  k ) D ( F `  j
 ) ) )  < 
 x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ta 
 /\  A. m  e.  ( ZZ>=
 `  k ) ( G `  ( ( F `  k ) D ( F `  m ) ) )  <  x ) ) )
 
Theoremcau3 11057* Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of  j in the assertion, so it can be used with rexanuz 10930 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
  k )  -  ( F `  j ) ) )  <  x ) 
 <-> 
 A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  A. m  e.  ( ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
 
Theoremcau4 11058* Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   =>    |-  ( N  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ( F `  k )  e.  CC  /\  ( abs `  (
 ( F `  k
 )  -  ( F `
  j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  W  A. k  e.  ( ZZ>= `  j )
 ( ( F `  k )  e.  CC  /\  ( abs `  (
 ( F `  k
 )  -  ( F `
  j ) ) )  <  x ) ) )
 
Theoremcaubnd2 11059* A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
  k )  -  ( F `  j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
 ) )  <  y
 )
 
Theoremamgm2 11060 Arithmetic-geometric mean inequality for  n  =  2. (Contributed by Mario Carneiro, 2-Jul-2014.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( sqr `  ( A  x.  B ) )  <_  ( ( A  +  B )  /  2
 ) )
 
Theoremsqrtthi 11061 Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  ( ( sqr `  A )  x.  ( sqr `  A ) )  =  A )
 
Theoremsqrtcli 11062 The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  ( sqr `  A )  e.  RR )
 
Theoremsqrtgt0i 11063 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  A  e.  RR   =>    |-  ( 0  <  A  ->  0  <  ( sqr `  A ) )
 
Theoremsqrtmsqi 11064 Square root of square. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  ( sqr `  ( A  x.  A ) )  =  A )
 
Theoremsqrtsqi 11065 Square root of square. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  ( sqr `  ( A ^ 2 ) )  =  A )
 
Theoremsqsqrti 11066 Square of square root. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  ( ( sqr `  A ) ^ 2
 )  =  A )
 
Theoremsqrtge0i 11067 The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  0  <_  ( sqr `  A ) )
 
Theoremabsidi 11068 A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   =>    |-  ( 0  <_  A  ->  ( abs `  A )  =  A )
 
Theoremabsnidi 11069 A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   =>    |-  ( A  <_  0 
 ->  ( abs `  A )  =  -u A )
 
Theoremleabsi 11070 A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   =>    |-  A  <_  ( abs `  A )
 
Theoremabsrei 11071 Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   =>    |-  ( abs `  A )  =  ( sqr `  ( A ^ 2
 ) )
 
Theoremsqrtpclii 11072 The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  ( sqr `  A )  e.  RR
 
Theoremsqrtgt0ii 11073 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  0  <  ( sqr `  A )
 
Theoremsqrt11i 11074 The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( ( sqr `  A )  =  ( sqr `  B )  <->  A  =  B ) )
 
Theoremsqrtmuli 11075 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( sqr `  ( A  x.  B ) )  =  ( ( sqr `  A )  x.  ( sqr `  B ) ) )
 
Theoremsqrtmulii 11076 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <_  A   &    |-  0  <_  B   =>    |-  ( sqr `  ( A  x.  B ) )  =  ( ( sqr `  A )  x.  ( sqr `  B ) )
 
Theoremsqrtmsq2i 11077 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( ( sqr `  A )  =  B  <->  A  =  ( B  x.  B ) ) )
 
Theoremsqrtlei 11078 Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <_  B  <-> 
 ( sqr `  A )  <_  ( sqr `  B ) ) )
 
Theoremsqrtlti 11079 Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <  B  <-> 
 ( sqr `  A )  <  ( sqr `  B ) ) )
 
Theoremabslti 11080 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( abs `  A )  <  B  <->  ( -u B  <  A  /\  A  <  B ) )
 
Theoremabslei 11081 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( abs `  A )  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) )
 
Theoremabsvalsqi 11082 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( ( abs `  A ) ^ 2
 )  =  ( A  x.  ( * `  A ) )
 
Theoremabsvalsq2i 11083 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( ( abs `  A ) ^ 2
 )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) )
 
Theoremabscli 11084 Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  A )  e.  RR
 
Theoremabsge0i 11085 Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  0  <_  ( abs `  A )
 
Theoremabsval2i 11086 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  A )  =  ( sqr `  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremabs00i 11087 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   =>    |-  ( ( abs `  A )  =  0  <->  A  =  0 )
 
Theoremabsgt0api 11088 The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A #  0  <->  0  <  ( abs `  A ) )
 
Theoremabsnegi 11089 Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  -u A )  =  ( abs `  A )
 
Theoremabscji 11090 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  ( * `  A ) )  =  ( abs `  A )
 
Theoremreleabsi 11091 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  A )  <_  ( abs `  A )
 
Theoremabssubi 11092 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( abs `  ( A  -  B ) )  =  ( abs `  ( B  -  A ) )
 
Theoremabsmuli 11093 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( abs `  ( A  x.  B ) )  =  ( ( abs `  A )  x.  ( abs `  B ) )
 
Theoremsqabsaddi 11094 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( abs `  ( A  +  B )
 ) ^ 2 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) )
 
Theoremsqabssubi 11095 Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( abs `  ( A  -  B ) ) ^ 2 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) )
 
Theoremabsdivapzi 11096 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( B #  0  ->  ( abs `  ( A  /  B ) )  =  ( ( abs `  A )  /  ( abs `  B ) ) )
 
Theoremabstrii 11097 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( abs `  ( A  +  B )
 )  <_  ( ( abs `  A )  +  ( abs `  B )
 )
 
Theoremabs3difi 11098 Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( abs `  ( A  -  B ) )  <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( C  -  B ) ) )
 
Theoremabs3lemi 11099 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  RR   =>    |-  ( ( ( abs `  ( A  -  C ) )  <  ( D 
 /  2 )  /\  ( abs `  ( C  -  B ) )  < 
 ( D  /  2
 ) )  ->  ( abs `  ( A  -  B ) )  <  D )
 
Theoremrpsqrtcld 11100 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( sqr `  A )  e.  RR+ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >