HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremffzo0hash 11001 The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
 |-  ( ( N  e.  NN0  /\  F  Fn  ( 0..^ N ) )  ->  ( `  F )  =  N )
 
Theoremfnfzo0hash 11002 The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.)
 |-  ( ( N  e.  NN0  /\  F : ( 0..^ N ) --> B ) 
 ->  ( `  F )  =  N )
 
Theoremhashfacen 11003* The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D } )
 
Theoremleisorel 11004 Version of isorel 5890 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
 |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A 
 C_  RR*  /\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A ) )  ->  ( C  <_  D  <->  ( F `  C )  <_  ( F `
  D ) ) )
 
Theoremzfz1isolemsplit 11005 Lemma for zfz1iso 11008. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  M  e.  X )   =>    |-  ( ph  ->  ( 1 ... ( `  X ) )  =  (
 ( 1 ... ( `  ( X  \  { M } ) ) )  u.  { ( `  X ) } ) )
 
Theoremzfz1isolemiso 11006* Lemma for zfz1iso 11008. Adding one element to the order isomorphism. (Contributed by Jim Kingdon, 8-Sep-2022.)
 |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  X 
 C_  ZZ )   &    |-  ( ph  ->  M  e.  X )   &    |-  ( ph  ->  A. z  e.  X  z  <_  M )   &    |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1
 ... ( `  ( X  \  { M } )
 ) ) ,  ( X  \  { M }
 ) ) )   &    |-  ( ph  ->  A  e.  (
 1 ... ( `  X ) ) )   &    |-  ( ph  ->  B  e.  (
 1 ... ( `  X ) ) )   =>    |-  ( ph  ->  ( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A )  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B ) ) )
 
Theoremzfz1isolem1 11007* Lemma for zfz1iso 11008. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
 |-  ( ph  ->  K  e.  om )   &    |-  ( ph  ->  A. y ( ( ( y  C_  ZZ  /\  y  e.  Fin )  /\  y  ~~  K )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  y ) ) ,  y ) ) )   &    |-  ( ph  ->  X  C_  ZZ )   &    |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  X 
 ~~  suc  K )   &    |-  ( ph  ->  M  e.  X )   &    |-  ( ph  ->  A. z  e.  X  z  <_  M )   =>    |-  ( ph  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( `  X ) ) ,  X ) )
 
Theoremzfz1iso 11008* A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
 |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1
 ... ( `  A )
 ) ,  A ) )
 
Theoremseq3coll 11009* The function  F contains a sparse set of nonzero values to be summed. The function  G is an order isomorphism from the set of nonzero values of  F to a 1-based finite sequence, and  H collects these nonzero values together. Under these conditions, the sum over the values in  H yields the same result as the sum over the original set  F. (Contributed by Mario Carneiro, 2-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  ( ( ph  /\  k  e.  S )  ->  ( Z  .+  k )  =  k )   &    |-  ( ( ph  /\  k  e.  S ) 
 ->  ( k  .+  Z )  =  k )   &    |-  (
 ( ph  /\  ( k  e.  S  /\  n  e.  S ) )  ->  ( k  .+  n )  e.  S )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ph  ->  G  Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   &    |-  ( ph  ->  N  e.  (
 1 ... ( `  A ) ) )   &    |-  ( ph  ->  A  C_  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  1 )
 )  ->  ( H `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ( M ... ( G `  ( `  A ) ) )  \  A ) )  ->  ( F `  k )  =  Z )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... ( `  A ) ) ) 
 ->  ( H `  n )  =  ( F `  ( G `  n ) ) )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  ( G `  N ) )  =  (  seq 1
 (  .+  ,  H ) `  N ) )
 
4.6.10.1  Proper unordered pairs and triples (sets of size 2 and 3)
 
Theoremhash2en 11010 Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.)
 |-  ( V  ~~  2o  <->  ( V  e.  Fin  /\  ( `  V )  =  2 ) )
 
Theoremhashdmprop2dom 11011 A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  Y )   &    |-  ( ph  ->  F  e.  Z )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. }  C_  F )   =>    |-  ( ph  ->  2o  ~<_  dom  F )
 
4.6.10.2  Functions with a domain containing at least two different elements
 
Theoremfundm2domnop0 11012 A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that  ( G  \  { (/) } ) needs to be a function instead of  G) is useful for proofs for extensible structures, see structn0fun 12920. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
 |-  ( ( Fun  ( G  \  { (/) } )  /\  2o  ~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
 
Theoremfundm2domnop 11013 A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof shortened by AV, 9-Jun-2021.)
 |-  ( ( Fun  G  /\  2o  ~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
 
Theoremfun2dmnop0 11014 A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 11015 (with the less restrictive requirement that  ( G  \  { (/) } ) needs to be a function instead of  G) is useful for proofs for extensible structures, see structn0fun 12920. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( Fun  ( G  \  { (/) } )  /\  A  =/=  B  /\  { A ,  B }  C_ 
 dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
 
Theoremfun2dmnop 11015 A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 9-Jun-2021.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( Fun  G  /\  A  =/=  B  /\  { A ,  B }  C_ 
 dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
 
4.7  Words over a set

This section is about words (or strings) over a set (alphabet) defined as finite sequences of symbols (or characters) being elements of the alphabet. Although it is often required that the underlying set/alphabet be nonempty, finite and not a proper class, these restrictions are not made in the current definition df-word 11017. Note that the empty word  (/) (i.e., the empty set) is the only word over an empty alphabet, see 0wrd0 11042. The set Word  S of words over  S is the free monoid over  S, where the monoid law is concatenation and the monoid unit is the empty word. Besides the definition of words themselves, several operations on words are defined in this section:

NameReferenceExplanationExample Remarks
Length (or size) of a word df-ihash 10943:  ( `  W ) Operation which determines the number of the symbols within the word.  W : ( 0..^ N ) --> S  ->  ( W  e. Word  S  /\  ( `  W )  =  N This is not a special definition for words, but for arbitrary sets.
First symbol of a word df-fv 5288:  ( W `  0 ) Operation which extracts the first symbol of a word. The result is the symbol at the first place in the sequence representing the word.  W : ( 0..^ 1 ) --> S  ->  ( W  e. Word  S  /\  ( W `  0 )  e.  S This is not a special definition for words, but for arbitrary functions with a half-open range of nonnegative integers as domain.
Last symbol of a word df-lsw 11061:  (lastS `  W ) Operation which extracts the last symbol of a word. The result is the symbol at the last place in the sequence representing the word.  W : ( 0..^ 3 ) --> S  ->  ( W  e. Word  S  /\  (lastS `  W )  =  ( W `  2 ) Note that the index of the last symbol is less by 1 than the length of the word.
Subword (or substring) of a word df-substr 11122:  ( W substr  <. I ,  J >. ) Operation which extracts a portion of a word. The result is a consecutive, reindexed part of the sequence representing the word.  W : ( 0..^ 3 ) --> S  ->  ( W  e. Word  S  /\  ( W substr  <. 1 ,  2 >. )  e. Word  S  /\  ( `  ( W substr  <. 1 ,  2 >. ) )  =  1 Note that the last index of the range defining the subword is greater by 1 than the index of the last symbol of the subword in the sequence of the original word.
Concatenation of two words df-concat 11070:  ( W ++  U ) Operation combining two words to one new word. The result is a combined, reindexed sequence build from the sequences representing the two words.  ( W  e. Word  S  /\  U  e. Word  S )  ->  ( `  ( W ++  U ) )  =  ( ( `  W )  +  ( `  U ) ) Note that the index of the first symbol of the second concatenated word is the length of the first word in the concatenation.
Singleton word df-s1 11093:  <" S "> Constructor building a word of length 1 from a symbol.  ( `  <" S "> )  =  1
Conventions:
  • Words are usually represented by class variable  W, or if two words are involved, by  W and  U or by  A and  B.
  • The alphabets are usually represented by class variable  V (because any arbitrary set can be an alphabet), sometimes also by  S (especially as codomain of the function representing a word, because the alphabet is the set of symbols).
  • The symbols are usually represented by class variables  S or  A, or if two symbols are involved, by  S and  T or by  A and  B.
  • The indices of the sequence representing a word are usually represented by class variable  I, if two indices are involved (especially for subwords) by  I and  J, or by  M and  N.
  • The length of a word is usually represented by class variables  N or  L.
  • The number of positions by which to cyclically shift a word is usually represented by class variables  N or  L.
 
4.7.1  Definitions and basic theorems
 
Syntaxcword 11016 Syntax for the Word operator.
 class Word  S
 
Definitiondf-word 11017* Define the class of words over a set. A word (sometimes also called a string) is a finite sequence of symbols from a set (alphabet)  S. Definition in Section 9.1 of [AhoHopUll] p. 318. The domain is forced to be an initial segment of  NN0 so that two words with the same symbols in the same order be equal. The set Word  S is sometimes denoted by S*, using the Kleene star, although the Kleene star, or Kleene closure, is sometimes reserved to denote an operation on languages. The set Word  S equipped with concatenation is the free monoid over  S, and the monoid unit is the empty word. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 14-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
 
Theoremiswrd 11018* Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
 |-  ( W  e. Word  S  <->  E. l  e.  NN0  W : ( 0..^ l ) --> S )
 
Theoremwrdval 11019* Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( S  e.  V  -> Word 
 S  =  U_ l  e.  NN0  ( S  ^m  ( 0..^ l ) ) )
 
Theoremlencl 11020 The length of a word is a nonnegative integer. This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.)
 |-  ( W  e. Word  S  ->  ( `  W )  e.  NN0 )
 
Theoremiswrdinn0 11021 A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  NN0 )  ->  W  e. Word  S )
 
Theoremwrdf 11022 A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( W  e. Word  S  ->  W : ( 0..^ ( `  W )
 ) --> S )
 
Theoremiswrdiz 11023 A zero-based sequence is a word. In iswrdinn0 11021 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.)
 |-  ( ( W :
 ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  W  e. Word  S )
 
Theoremwrddm 11024 The indices of a word (i.e. its domain regarded as function) are elements of an open range of nonnegative integers (of length equal to the length of the word). (Contributed by AV, 2-May-2020.)
 |-  ( W  e. Word  S  ->  dom  W  =  ( 0..^ ( `  W )
 ) )
 
Theoremsswrd 11025 The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
 |-  ( S  C_  T  -> Word 
 S  C_ Word  T )
 
Theoremsnopiswrd 11026 A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018.) (Proof shortened by AV, 18-Apr-2021.)
 |-  ( S  e.  V  ->  { <. 0 ,  S >. }  e. Word  V )
 
Theoremwrdexg 11027 The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
 |-  ( S  e.  V  -> Word 
 S  e.  _V )
 
Theoremwrdexb 11028 The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
 |-  ( S  e.  _V  <-> Word  S  e.  _V )
 
Theoremwrdexi 11029 The set of words over a set is a set, inference form. (Contributed by AV, 23-May-2021.)
 |-  S  e.  _V   =>    |- Word  S  e.  _V
 
Theoremwrdsymbcl 11030 A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
 |-  ( ( W  e. Word  V 
 /\  I  e.  (
 0..^ ( `  W )
 ) )  ->  ( W `  I )  e.  V )
 
Theoremwrdfn 11031 A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
 |-  ( W  e. Word  S  ->  W  Fn  ( 0..^ ( `  W )
 ) )
 
Theoremwrdv 11032 A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.)
 |-  ( W  e. Word  V  ->  W  e. Word  _V )
 
Theoremwrdlndm 11033 The length of a word is not in the domain of the word (regarded as a function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ, 18-Nov-2022.)
 |-  ( W  e. Word  V  ->  ( `  W )  e/  dom  W )
 
Theoremiswrdsymb 11034* An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
 |-  ( ( W  e. Word  _V 
 /\  A. i  e.  (
 0..^ ( `  W )
 ) ( W `  i )  e.  V )  ->  W  e. Word  V )
 
Theoremwrdfin 11035 A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.)
 |-  ( W  e. Word  S  ->  W  e.  Fin )
 
Theoremlennncl 11036 The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.)
 |-  ( ( W  e. Word  S 
 /\  W  =/=  (/) )  ->  ( `  W )  e. 
 NN )
 
Theoremwrdffz 11037 A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021.)
 |-  ( W  e. Word  S  ->  W : ( 0
 ... ( ( `  W )  -  1 ) ) --> S )
 
Theoremwrdeq 11038 Equality theorem for the set of words. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( S  =  T  -> Word 
 S  = Word  T )
 
Theoremwrdeqi 11039 Equality theorem for the set of words, inference form. (Contributed by AV, 23-May-2021.)
 |-  S  =  T   =>    |- Word  S  = Word  T
 
Theoremiswrddm0 11040 A function with empty domain is a word. (Contributed by AV, 13-Oct-2018.)
 |-  ( W : (/) --> S 
 ->  W  e. Word  S )
 
Theoremwrd0 11041 The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.)
 |-  (/)  e. Word  S
 
Theorem0wrd0 11042 The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018.)
 |-  ( W  e. Word  (/)  <->  W  =  (/) )
 
Theoremwrdsymb 11043 A word is a word over the symbols it consists of. (Contributed by AV, 1-Dec-2022.)
 |-  ( S  e. Word  A  ->  S  e. Word  ( S " ( 0..^ ( `  S ) ) ) )
 
Theoremnfwrd 11044 Hypothesis builder for Word  S. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  F/_ x S   =>    |-  F/_ xWord  S
 
Theoremcsbwrdg 11045* Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  ( S  e.  V  -> 
 [_ S  /  x ]_Word 
 x  = Word  S )
 
Theoremwrdnval 11046* Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.)
 |-  ( ( V  e.  X  /\  N  e.  NN0 )  ->  { w  e. Word  V  |  ( `  w )  =  N }  =  ( V  ^m  (
 0..^ N ) ) )
 
Theoremwrdmap 11047 Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  ( ( V  e.  X  /\  N  e.  NN0 )  ->  ( ( W  e. Word  V  /\  ( `  W )  =  N )  <->  W  e.  ( V  ^m  ( 0..^ N ) ) ) )
 
Theoremwrdsymb0 11048 A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  I  e.  ZZ )  ->  ( ( I  <  0  \/  ( `  W )  <_  I
 )  ->  ( W `  I )  =  (/) ) )
 
Theoremwrdlenge1n0 11049 A word with length at least 1 is not empty. (Contributed by AV, 14-Oct-2018.)
 |-  ( W  e. Word  V  ->  ( W  =/=  (/)  <->  1  <_  ( `  W ) ) )
 
Theoremlen0nnbi 11050 The length of a word is a positive integer iff the word is not empty. (Contributed by AV, 22-Mar-2022.)
 |-  ( W  e. Word  S  ->  ( W  =/=  (/)  <->  ( `  W )  e.  NN ) )
 
Theoremwrdlenge2n0 11051 A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  2  <_  ( `  W ) )  ->  W  =/=  (/) )
 
Theoremwrdsymb1 11052 The first symbol of a nonempty word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
 |-  ( ( W  e. Word  V 
 /\  1  <_  ( `  W ) )  ->  ( W `  0 )  e.  V )
 
Theoremwrdlen1 11053* A word of length 1 starts with a symbol. (Contributed by AV, 20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  ( `  W )  =  1 )  ->  E. v  e.  V  ( W `  0 )  =  v )
 
Theoremfstwrdne 11054 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  W  =/=  (/) )  ->  ( W `  0 )  e.  V )
 
Theoremfstwrdne0 11055 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( N  e.  NN  /\  ( W  e. Word  V 
 /\  ( `  W )  =  N ) )  ->  ( W `  0 )  e.  V )
 
Theoremeqwrd 11056* Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.)
 |-  ( ( U  e. Word  S 
 /\  W  e. Word  T )  ->  ( U  =  W 
 <->  ( ( `  U )  =  ( `  W )  /\  A. i  e.  ( 0..^ ( `  U ) ) ( U `
  i )  =  ( W `  i
 ) ) ) )
 
Theoremelovmpowrd 11057* Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that  ph may depend on  z as well as on  v and  y. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )   =>    |-  ( Z  e.  ( V O Y ) 
 ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
 
Theoremwrdred1 11058 A word truncated by a symbol is a word. (Contributed by AV, 29-Jan-2021.)
 |-  ( F  e. Word  S  ->  ( F  |`  ( 0..^ ( ( `  F )  -  1 ) ) )  e. Word  S )
 
Theoremwrdred1hash 11059 The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
 |-  ( ( F  e. Word  S 
 /\  1  <_  ( `  F ) )  ->  ( `  ( F  |`  ( 0..^ ( ( `  F )  -  1 ) ) ) )  =  ( ( `  F )  -  1 ) )
 
4.7.2  Last symbol of a word
 
Syntaxclsw 11060 Extend class notation with the Last Symbol of a word.
 class lastS
 
Definitiondf-lsw 11061 Extract the last symbol of a word. May be not meaningful for other sets which are not words. The name lastS (as abbreviation of "lastSymbol") is a compromise between usually used names for corresponding functions in computer programs (as last() or lastChar()), the terminology used for words in set.mm ("symbol" instead of "character") and brevity ("lastS" is shorter than "lastChar" and "lastSymbol"). Labels of theorems about last symbols of a word will contain the abbreviation "lsw" (Last Symbol of a Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 |- lastS  =  ( w  e.  _V  |->  ( w `  ( ( `  w )  -  1
 ) ) )
 
Theoremlswwrd 11062 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  =  ( W `  (
 ( `  W )  -  1 ) ) )
 
Theoremlsw0 11063 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  ( `  W )  =  0 )  ->  (lastS `  W )  =  (/) )
 
Theoremlsw0g 11064 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 11-Nov-2018.)
 |-  (lastS `  (/) )  =  (/)
 
Theoremlsw1 11065 The last symbol of a word of length 1 is the first symbol of this word. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
 |-  ( ( W  e. Word  V 
 /\  ( `  W )  =  1 )  ->  (lastS `  W )  =  ( W `  0
 ) )
 
Theoremlswcl 11066 Closure of the last symbol: the last symbol of a nonempty word belongs to the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( W  e. Word  V 
 /\  W  =/=  (/) )  ->  (lastS `  W )  e.  V )
 
Theoremlswex 11067 Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11064 or lswcl 11066 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  e.  _V )
 
Theoremlswlgt0cl 11068 The last symbol of a nonempty word is an element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( N  e.  NN  /\  ( W  e. Word  V 
 /\  ( `  W )  =  N ) )  ->  (lastS `  W )  e.  V )
 
4.7.3  Concatenations of words
 
Syntaxcconcat 11069 Syntax for the concatenation operator.
 class ++
 
Definitiondf-concat 11070* Define the concatenation operator which combines two words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.)
 |- ++ 
 =  ( s  e. 
 _V ,  t  e. 
 _V  |->  ( x  e.  ( 0..^ ( ( `  s )  +  ( `  t ) ) ) 
 |->  if ( x  e.  ( 0..^ ( `  s
 ) ) ,  (
 s `  x ) ,  ( t `  ( x  -  ( `  s
 ) ) ) ) ) )
 
Theoremccatfvalfi 11071* Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e.  Fin  /\  T  e.  Fin )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
 |->  if ( x  e.  ( 0..^ ( `  S ) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
 
Theoremccatcl 11072 The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  B )
 
Theoremccatclab 11073 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  ( A  u.  B ) )
 
Theoremccatlen 11074 The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S )  +  ( `  T )
 ) )
 
Theoremccat0 11075 The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( ( S ++ 
 T )  =  (/)  <->  ( S  =  (/)  /\  T  =  (/) ) ) )
 
Theoremccatval1 11076 Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( `  S )
 ) )  ->  (
 ( S ++  T ) `
  I )  =  ( S `  I
 ) )
 
Theoremccatval2 11077 Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 ( `  S )..^ ( ( `  S )  +  ( `  T )
 ) ) )  ->  ( ( S ++  T ) `  I )  =  ( T `  ( I  -  ( `  S ) ) ) )
 
Theoremccatval3 11078 Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( `  T )
 ) )  ->  (
 ( S ++  T ) `
  ( I  +  ( `  S ) ) )  =  ( T `
  I ) )
 
Theoremelfzelfzccat 11079 An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... ( `  A ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) ) )
 
Theoremccatvalfn 11080 The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V )  ->  ( A ++  B )  Fn  ( 0..^ ( ( `  A )  +  ( `  B )
 ) ) )
 
Theoremccatsymb 11081 The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  I  e.  ZZ )  ->  ( ( A ++ 
 B ) `  I
 )  =  if ( I  <  ( `  A ) ,  ( A `  I
 ) ,  ( B `
  ( I  -  ( `  A ) ) ) ) )
 
Theoremccatfv0 11082 The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  0  <  ( `  A ) )  ->  ( ( A ++  B ) `  0 )  =  ( A `  0 ) )
 
Theoremccatval1lsw 11083 The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  A  =/=  (/) )  ->  ( ( A ++  B ) `  ( ( `  A )  -  1 ) )  =  (lastS `  A ) )
 
Theoremccatval21sw 11084 The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( ( A ++  B ) `  ( `  A ) )  =  ( B `  0 ) )
 
Theoremccatlid 11085 Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( S  e. Word  B  ->  ( (/) ++  S )  =  S )
 
Theoremccatrid 11086 Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( S  e. Word  B  ->  ( S ++  (/) )  =  S )
 
Theoremccatass 11087 Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( ( S ++  T ) ++  U )  =  ( S ++  ( T ++  U ) ) )
 
Theoremccatrn 11088 The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ran  ( S ++  T )  =  ( ran 
 S  u.  ran  T ) )
 
Theoremccatidid 11089 Concatenation of the empty word by the empty word. (Contributed by AV, 26-Mar-2022.)
 |-  ( (/) ++  (/) )  =  (/)
 
Theoremlswccatn0lsw 11090 The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )
 
Theoremlswccat0lsw 11091 The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( W  e. Word  V  ->  (lastS `  ( W ++  (/) ) )  =  (lastS `  W ) )
 
4.7.4  Singleton words
 
Syntaxcs1 11092 Syntax for the singleton word constructor.
 class  <" A ">
 
Definitiondf-s1 11093 Define the canonical injection from symbols to words. Although not required,  A should usually be a set. Otherwise, the singleton word  <" A "> would be the singleton word consisting of the empty set, see s1prc 11100, and not, as maybe expected, the empty word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |- 
 <" A ">  =  { <. 0 ,  (  _I  `  A ) >. }
 
Theorems1val 11094 Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( A  e.  V  -> 
 <" A ">  =  { <. 0 ,  A >. } )
 
Theorems1rn 11095 The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
 |-  ( A  e.  V  ->  ran  <" A ">  =  { A }
 )
 
Theorems1eq 11096 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( A  =  B  -> 
 <" A ">  = 
 <" B "> )
 
Theorems1eqd 11097 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <" A ">  =  <" B "> )
 
Theorems1cl 11098 A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
 |-  ( A  e.  B  -> 
 <" A ">  e. Word  B )
 
Theorems1cld 11099 A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  <" A ">  e. Word  B )
 
Theorems1prc 11100 Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.)
 |-  ( -.  A  e.  _V 
 ->  <" A ">  =  <" (/) "> )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >