HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsswrd 11001 The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
 |-  ( S  C_  T  -> Word 
 S  C_ Word  T )
 
Theoremsnopiswrd 11002 A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018.) (Proof shortened by AV, 18-Apr-2021.)
 |-  ( S  e.  V  ->  { <. 0 ,  S >. }  e. Word  V )
 
Theoremwrdexg 11003 The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
 |-  ( S  e.  V  -> Word 
 S  e.  _V )
 
Theoremwrdexb 11004 The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
 |-  ( S  e.  _V  <-> Word  S  e.  _V )
 
Theoremwrdexi 11005 The set of words over a set is a set, inference form. (Contributed by AV, 23-May-2021.)
 |-  S  e.  _V   =>    |- Word  S  e.  _V
 
Theoremwrdsymbcl 11006 A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
 |-  ( ( W  e. Word  V 
 /\  I  e.  (
 0..^ ( `  W )
 ) )  ->  ( W `  I )  e.  V )
 
Theoremwrdfn 11007 A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
 |-  ( W  e. Word  S  ->  W  Fn  ( 0..^ ( `  W )
 ) )
 
Theoremwrdv 11008 A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.)
 |-  ( W  e. Word  V  ->  W  e. Word  _V )
 
Theoremwrdlndm 11009 The length of a word is not in the domain of the word (regarded as a function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ, 18-Nov-2022.)
 |-  ( W  e. Word  V  ->  ( `  W )  e/  dom  W )
 
Theoremiswrdsymb 11010* An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
 |-  ( ( W  e. Word  _V 
 /\  A. i  e.  (
 0..^ ( `  W )
 ) ( W `  i )  e.  V )  ->  W  e. Word  V )
 
Theoremwrdfin 11011 A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.)
 |-  ( W  e. Word  S  ->  W  e.  Fin )
 
Theoremlennncl 11012 The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.)
 |-  ( ( W  e. Word  S 
 /\  W  =/=  (/) )  ->  ( `  W )  e. 
 NN )
 
Theoremwrdffz 11013 A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021.)
 |-  ( W  e. Word  S  ->  W : ( 0
 ... ( ( `  W )  -  1 ) ) --> S )
 
Theoremwrdeq 11014 Equality theorem for the set of words. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( S  =  T  -> Word 
 S  = Word  T )
 
Theoremwrdeqi 11015 Equality theorem for the set of words, inference form. (Contributed by AV, 23-May-2021.)
 |-  S  =  T   =>    |- Word  S  = Word  T
 
Theoremiswrddm0 11016 A function with empty domain is a word. (Contributed by AV, 13-Oct-2018.)
 |-  ( W : (/) --> S 
 ->  W  e. Word  S )
 
Theoremwrd0 11017 The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.)
 |-  (/)  e. Word  S
 
Theorem0wrd0 11018 The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018.)
 |-  ( W  e. Word  (/)  <->  W  =  (/) )
 
Theoremwrdsymb 11019 A word is a word over the symbols it consists of. (Contributed by AV, 1-Dec-2022.)
 |-  ( S  e. Word  A  ->  S  e. Word  ( S " ( 0..^ ( `  S ) ) ) )
 
Theoremnfwrd 11020 Hypothesis builder for Word  S. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  F/_ x S   =>    |-  F/_ xWord  S
 
Theoremcsbwrdg 11021* Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  ( S  e.  V  -> 
 [_ S  /  x ]_Word 
 x  = Word  S )
 
Theoremwrdnval 11022* Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.)
 |-  ( ( V  e.  X  /\  N  e.  NN0 )  ->  { w  e. Word  V  |  ( `  w )  =  N }  =  ( V  ^m  (
 0..^ N ) ) )
 
Theoremwrdmap 11023 Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  ( ( V  e.  X  /\  N  e.  NN0 )  ->  ( ( W  e. Word  V  /\  ( `  W )  =  N )  <->  W  e.  ( V  ^m  ( 0..^ N ) ) ) )
 
Theoremwrdsymb0 11024 A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  I  e.  ZZ )  ->  ( ( I  <  0  \/  ( `  W )  <_  I
 )  ->  ( W `  I )  =  (/) ) )
 
Theoremwrdlenge1n0 11025 A word with length at least 1 is not empty. (Contributed by AV, 14-Oct-2018.)
 |-  ( W  e. Word  V  ->  ( W  =/=  (/)  <->  1  <_  ( `  W ) ) )
 
Theoremlen0nnbi 11026 The length of a word is a positive integer iff the word is not empty. (Contributed by AV, 22-Mar-2022.)
 |-  ( W  e. Word  S  ->  ( W  =/=  (/)  <->  ( `  W )  e.  NN ) )
 
Theoremwrdlenge2n0 11027 A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  2  <_  ( `  W ) )  ->  W  =/=  (/) )
 
Theoremwrdsymb1 11028 The first symbol of a nonempty word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
 |-  ( ( W  e. Word  V 
 /\  1  <_  ( `  W ) )  ->  ( W `  0 )  e.  V )
 
Theoremwrdlen1 11029* A word of length 1 starts with a symbol. (Contributed by AV, 20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  ( `  W )  =  1 )  ->  E. v  e.  V  ( W `  0 )  =  v )
 
Theoremfstwrdne 11030 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  W  =/=  (/) )  ->  ( W `  0 )  e.  V )
 
Theoremfstwrdne0 11031 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( N  e.  NN  /\  ( W  e. Word  V 
 /\  ( `  W )  =  N ) )  ->  ( W `  0 )  e.  V )
 
Theoremeqwrd 11032* Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.)
 |-  ( ( U  e. Word  S 
 /\  W  e. Word  T )  ->  ( U  =  W 
 <->  ( ( `  U )  =  ( `  W )  /\  A. i  e.  ( 0..^ ( `  U ) ) ( U `
  i )  =  ( W `  i
 ) ) ) )
 
Theoremelovmpowrd 11033* Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that  ph may depend on  z as well as on  v and  y. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )   =>    |-  ( Z  e.  ( V O Y ) 
 ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
 
Theoremwrdred1 11034 A word truncated by a symbol is a word. (Contributed by AV, 29-Jan-2021.)
 |-  ( F  e. Word  S  ->  ( F  |`  ( 0..^ ( ( `  F )  -  1 ) ) )  e. Word  S )
 
Theoremwrdred1hash 11035 The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
 |-  ( ( F  e. Word  S 
 /\  1  <_  ( `  F ) )  ->  ( `  ( F  |`  ( 0..^ ( ( `  F )  -  1 ) ) ) )  =  ( ( `  F )  -  1 ) )
 
4.7.2  Last symbol of a word
 
Syntaxclsw 11036 Extend class notation with the Last Symbol of a word.
 class lastS
 
Definitiondf-lsw 11037 Extract the last symbol of a word. May be not meaningful for other sets which are not words. The name lastS (as abbreviation of "lastSymbol") is a compromise between usually used names for corresponding functions in computer programs (as last() or lastChar()), the terminology used for words in set.mm ("symbol" instead of "character") and brevity ("lastS" is shorter than "lastChar" and "lastSymbol"). Labels of theorems about last symbols of a word will contain the abbreviation "lsw" (Last Symbol of a Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 |- lastS  =  ( w  e.  _V  |->  ( w `  ( ( `  w )  -  1
 ) ) )
 
Theoremlswwrd 11038 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
 |-  ( W  e. Word  V  ->  (lastS `  W )  =  ( W `  (
 ( `  W )  -  1 ) ) )
 
Theoremlsw0 11039 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  ( `  W )  =  0 )  ->  (lastS `  W )  =  (/) )
 
Theoremlsw0g 11040 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 11-Nov-2018.)
 |-  (lastS `  (/) )  =  (/)
 
Theoremlsw1 11041 The last symbol of a word of length 1 is the first symbol of this word. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
 |-  ( ( W  e. Word  V 
 /\  ( `  W )  =  1 )  ->  (lastS `  W )  =  ( W `  0
 ) )
 
Theoremlswcl 11042 Closure of the last symbol: the last symbol of a nonempty word belongs to the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( W  e. Word  V 
 /\  W  =/=  (/) )  ->  (lastS `  W )  e.  V )
 
Theoremlswlgt0cl 11043 The last symbol of a nonempty word is an element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( N  e.  NN  /\  ( W  e. Word  V 
 /\  ( `  W )  =  N ) )  ->  (lastS `  W )  e.  V )
 
4.7.3  Concatenations of words
 
Syntaxcconcat 11044 Syntax for the concatenation operator.
 class ++
 
Definitiondf-concat 11045* Define the concatenation operator which combines two words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.)
 |- ++ 
 =  ( s  e. 
 _V ,  t  e. 
 _V  |->  ( x  e.  ( 0..^ ( ( `  s )  +  ( `  t ) ) ) 
 |->  if ( x  e.  ( 0..^ ( `  s
 ) ) ,  (
 s `  x ) ,  ( t `  ( x  -  ( `  s
 ) ) ) ) ) )
 
Theoremccatfvalfi 11046* Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e.  Fin  /\  T  e.  Fin )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
 |->  if ( x  e.  ( 0..^ ( `  S ) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
 
Theoremccatcl 11047 The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  B )
 
Theoremccatclab 11048 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  ( A  u.  B ) )
 
Theoremccatlen 11049 The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S )  +  ( `  T )
 ) )
 
Theoremccat0 11050 The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B )  ->  ( ( S ++ 
 T )  =  (/)  <->  ( S  =  (/)  /\  T  =  (/) ) ) )
 
Theoremccatval1 11051 Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.)
 |-  ( ( S  e. Word  A 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( `  S )
 ) )  ->  (
 ( S ++  T ) `
  I )  =  ( S `  I
 ) )
 
Theoremccatval2 11052 Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 ( `  S )..^ ( ( `  S )  +  ( `  T )
 ) ) )  ->  ( ( S ++  T ) `  I )  =  ( T `  ( I  -  ( `  S ) ) ) )
 
Theoremccatval3 11053 Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( `  T )
 ) )  ->  (
 ( S ++  T ) `
  ( I  +  ( `  S ) ) )  =  ( T `
  I ) )
 
Theoremelfzelfzccat 11054 An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... ( `  A ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) ) )
 
Theoremccatvalfn 11055 The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V )  ->  ( A ++  B )  Fn  ( 0..^ ( ( `  A )  +  ( `  B )
 ) ) )
 
Theoremccatsymb 11056 The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  I  e.  ZZ )  ->  ( ( A ++ 
 B ) `  I
 )  =  if ( I  <  ( `  A ) ,  ( A `  I
 ) ,  ( B `
  ( I  -  ( `  A ) ) ) ) )
 
Theoremccatfv0 11057 The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  0  <  ( `  A ) )  ->  ( ( A ++  B ) `  0 )  =  ( A `  0 ) )
 
Theoremccatval1lsw 11058 The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  A  =/=  (/) )  ->  ( ( A ++  B ) `  ( ( `  A )  -  1 ) )  =  (lastS `  A ) )
 
Theoremccatval21sw 11059 The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( ( A ++  B ) `  ( `  A ) )  =  ( B `  0 ) )
 
Theoremccatlid 11060 Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( S  e. Word  B  ->  ( (/) ++  S )  =  S )
 
Theoremccatrid 11061 Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( S  e. Word  B  ->  ( S ++  (/) )  =  S )
 
Theoremccatass 11062 Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( ( S ++  T ) ++  U )  =  ( S ++  ( T ++  U ) ) )
 
Theoremccatrn 11063 The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ran  ( S ++  T )  =  ( ran 
 S  u.  ran  T ) )
 
Theoremccatidid 11064 Concatenation of the empty word by the empty word. (Contributed by AV, 26-Mar-2022.)
 |-  ( (/) ++  (/) )  =  (/)
 
Theoremlswccatn0lsw 11065 The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  B  =/=  (/) )  ->  (lastS `  ( A ++  B ) )  =  (lastS `  B ) )
 
Theoremlswccat0lsw 11066 The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( W  e. Word  V  ->  (lastS `  ( W ++  (/) ) )  =  (lastS `  W ) )
 
4.8  Elementary real and complex functions
 
4.8.1  The "shift" operation
 
Syntaxcshi 11067 Extend class notation with function shifter.
 class  shift
 
Definitiondf-shft 11068* Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of  CC) and produces a new function on  CC. See shftval 11078 for its value. (Contributed by NM, 20-Jul-2005.)
 |- 
 shift  =  ( f  e.  _V ,  x  e. 
 CC  |->  { <. y ,  z >.  |  ( y  e. 
 CC  /\  ( y  -  x ) f z ) } )
 
Theoremshftlem 11069* Two ways to write a shifted set  ( B  +  A
). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
 
Theoremshftuz 11070* A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A ) ) )
 
Theoremshftfvalg 11071* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremovshftex 11072 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
 
Theoremshftfibg 11073 Value of a fiber of the relation  F. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) }
 ) )
 
Theoremshftfval 11074* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremshftdm 11075* Domain of a relation shifted by  A. The set on the right is more commonly notated as  ( dom  F  +  A ) (meaning add  A to every element of  dom  F). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  dom  F }
 )
 
Theoremshftfib 11076 Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A )
 " { B }
 )  =  ( F
 " { ( B  -  A ) }
 ) )
 
Theoremshftfn 11077* Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn 
 { x  e.  CC  |  ( x  -  A )  e.  B }
 )
 
Theoremshftval 11078 Value of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval2 11079 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( F  shift  ( A  -  B ) ) `  ( A  +  C ) )  =  ( F `  ( B  +  C ) ) )
 
Theoremshftval3 11080 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  ( A  -  B ) ) `
  A )  =  ( F `  B ) )
 
Theoremshftval4 11081 Value of a sequence shifted by  -u A. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B )
 ) )
 
Theoremshftval5 11082 Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  ( B  +  A ) )  =  ( F `  B ) )
 
Theoremshftf 11083* Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e. 
 CC  |  ( x  -  A )  e.  B } --> C )
 
Theorem2shfti 11084 Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) 
 shift  B )  =  ( F  shift  ( A  +  B ) ) )
 
Theoremshftidt2 11085 Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( F  shift  0 )  =  ( F  |`  CC )
 
Theoremshftidt 11086 Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( ( F 
 shift  0 ) `  A )  =  ( F `  A ) )
 
Theoremshftcan1 11087 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  A )  shift  -u A ) `  B )  =  ( F `  B ) )
 
Theoremshftcan2 11088 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  -u A )  shift  A ) `
  B )  =  ( F `  B ) )
 
Theoremshftvalg 11089 Value of a sequence shifted by  A. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval4g 11090 Value of a sequence shifted by  -u A. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) )
 
Theoremseq3shft 11091* Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) ) 
 ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq
 M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
 
4.8.2  Real and imaginary parts; conjugate
 
Syntaxccj 11092 Extend class notation to include complex conjugate function.
 class  *
 
Syntaxcre 11093 Extend class notation to include real part of a complex number.
 class  Re
 
Syntaxcim 11094 Extend class notation to include imaginary part of a complex number.
 class  Im
 
Definitiondf-cj 11095* Define the complex conjugate function. See cjcli 11166 for its closure and cjval 11098 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e. 
 RR ) ) )
 
Definitiondf-re 11096 Define a function whose value is the real part of a complex number. See reval 11102 for its value, recli 11164 for its closure, and replim 11112 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `
  x ) ) 
 /  2 ) )
 
Definitiondf-im 11097 Define a function whose value is the imaginary part of a complex number. See imval 11103 for its value, imcli 11165 for its closure, and replim 11112 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Im  =  ( x  e.  CC  |->  ( Re
 `  ( x  /  _i ) ) )
 
Theoremcjval 11098* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( iota_ x  e. 
 CC  ( ( A  +  x )  e. 
 RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
 
Theoremcjth 11099 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( ( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
 
Theoremcjf 11100 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  * : CC --> CC
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >