ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval Unicode version

Theorem absval 10976
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )

Proof of Theorem absval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 10973 . . . 4  |-  sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^
2 )  =  x  /\  0  <_  y
) ) )
2 reex 7920 . . . . 5  |-  RR  e.  _V
32mptex 5734 . . . 4  |-  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )  e.  _V
41, 3eqeltri 2248 . . 3  |-  sqr  e.  _V
5 id 19 . . . 4  |-  ( A  e.  CC  ->  A  e.  CC )
6 cjcl 10823 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
75, 6mulcld 7952 . . 3  |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  CC )
8 fvexg 5526 . . 3  |-  ( ( sqr  e.  _V  /\  ( A  x.  (
* `  A )
)  e.  CC )  ->  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  CC  ->  ( sqr `  ( A  x.  ( * `  A
) ) )  e. 
_V )
10 fveq2 5507 . . . . 5  |-  ( x  =  A  ->  (
* `  x )  =  ( * `  A ) )
11 oveq12 5874 . . . . 5  |-  ( ( x  =  A  /\  ( * `  x
)  =  ( * `
 A ) )  ->  ( x  x.  ( * `  x
) )  =  ( A  x.  ( * `
 A ) ) )
1210, 11mpdan 421 . . . 4  |-  ( x  =  A  ->  (
x  x.  ( * `
 x ) )  =  ( A  x.  ( * `  A
) ) )
1312fveq2d 5511 . . 3  |-  ( x  =  A  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
14 df-abs 10974 . . 3  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
1513, 14fvmptg 5584 . 2  |-  ( ( A  e.  CC  /\  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
169, 15mpdan 421 1  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   _Vcvv 2735   class class class wbr 3998    |-> cmpt 4059   ` cfv 5208   iota_crio 5820  (class class class)co 5865   CCcc 7784   RRcr 7785   0cc0 7786    x. cmul 7791    <_ cle 7967   2c2 8941   ^cexp 10487   *ccj 10814   sqrcsqrt 10971   abscabs 10972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-sub 8104  df-neg 8105  df-reap 8506  df-cj 10817  df-rsqrt 10973  df-abs 10974
This theorem is referenced by:  absneg  11025  abscl  11026  abscj  11027  absvalsq  11028  absval2  11032  abs0  11033  absi  11034  absge0  11035  absrpclap  11036  absmul  11044  absid  11046  absre  11052  absf  11085
  Copyright terms: Public domain W3C validator