ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval Unicode version

Theorem absval 11168
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )

Proof of Theorem absval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 11165 . . . 4  |-  sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^
2 )  =  x  /\  0  <_  y
) ) )
2 reex 8015 . . . . 5  |-  RR  e.  _V
32mptex 5789 . . . 4  |-  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )  e.  _V
41, 3eqeltri 2269 . . 3  |-  sqr  e.  _V
5 id 19 . . . 4  |-  ( A  e.  CC  ->  A  e.  CC )
6 cjcl 11015 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
75, 6mulcld 8049 . . 3  |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  CC )
8 fvexg 5578 . . 3  |-  ( ( sqr  e.  _V  /\  ( A  x.  (
* `  A )
)  e.  CC )  ->  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  CC  ->  ( sqr `  ( A  x.  ( * `  A
) ) )  e. 
_V )
10 fveq2 5559 . . . . 5  |-  ( x  =  A  ->  (
* `  x )  =  ( * `  A ) )
11 oveq12 5932 . . . . 5  |-  ( ( x  =  A  /\  ( * `  x
)  =  ( * `
 A ) )  ->  ( x  x.  ( * `  x
) )  =  ( A  x.  ( * `
 A ) ) )
1210, 11mpdan 421 . . . 4  |-  ( x  =  A  ->  (
x  x.  ( * `
 x ) )  =  ( A  x.  ( * `  A
) ) )
1312fveq2d 5563 . . 3  |-  ( x  =  A  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
14 df-abs 11166 . . 3  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
1513, 14fvmptg 5638 . 2  |-  ( ( A  e.  CC  /\  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
169, 15mpdan 421 1  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259   iota_crio 5877  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881    x. cmul 7886    <_ cle 8064   2c2 9043   ^cexp 10632   *ccj 11006   sqrcsqrt 11163   abscabs 11164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-sub 8201  df-neg 8202  df-reap 8604  df-cj 11009  df-rsqrt 11165  df-abs 11166
This theorem is referenced by:  absneg  11217  abscl  11218  abscj  11219  absvalsq  11220  absval2  11224  abs0  11225  absi  11226  absge0  11227  absrpclap  11228  absmul  11236  absid  11238  absre  11244  absf  11277
  Copyright terms: Public domain W3C validator