ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval Unicode version

Theorem absval 11345
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )

Proof of Theorem absval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 11342 . . . 4  |-  sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^
2 )  =  x  /\  0  <_  y
) ) )
2 reex 8061 . . . . 5  |-  RR  e.  _V
32mptex 5812 . . . 4  |-  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )  e.  _V
41, 3eqeltri 2278 . . 3  |-  sqr  e.  _V
5 id 19 . . . 4  |-  ( A  e.  CC  ->  A  e.  CC )
6 cjcl 11192 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
75, 6mulcld 8095 . . 3  |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  CC )
8 fvexg 5597 . . 3  |-  ( ( sqr  e.  _V  /\  ( A  x.  (
* `  A )
)  e.  CC )  ->  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  CC  ->  ( sqr `  ( A  x.  ( * `  A
) ) )  e. 
_V )
10 fveq2 5578 . . . . 5  |-  ( x  =  A  ->  (
* `  x )  =  ( * `  A ) )
11 oveq12 5955 . . . . 5  |-  ( ( x  =  A  /\  ( * `  x
)  =  ( * `
 A ) )  ->  ( x  x.  ( * `  x
) )  =  ( A  x.  ( * `
 A ) ) )
1210, 11mpdan 421 . . . 4  |-  ( x  =  A  ->  (
x  x.  ( * `
 x ) )  =  ( A  x.  ( * `  A
) ) )
1312fveq2d 5582 . . 3  |-  ( x  =  A  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
14 df-abs 11343 . . 3  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
1513, 14fvmptg 5657 . 2  |-  ( ( A  e.  CC  /\  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
169, 15mpdan 421 1  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4045    |-> cmpt 4106   ` cfv 5272   iota_crio 5900  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927    x. cmul 7932    <_ cle 8110   2c2 9089   ^cexp 10685   *ccj 11183   sqrcsqrt 11340   abscabs 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-sub 8247  df-neg 8248  df-reap 8650  df-cj 11186  df-rsqrt 11342  df-abs 11343
This theorem is referenced by:  absneg  11394  abscl  11395  abscj  11396  absvalsq  11397  absval2  11401  abs0  11402  absi  11403  absge0  11404  absrpclap  11405  absmul  11413  absid  11415  absre  11421  absf  11454
  Copyright terms: Public domain W3C validator