ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval Unicode version

Theorem absval 11512
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )

Proof of Theorem absval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 11509 . . . 4  |-  sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^
2 )  =  x  /\  0  <_  y
) ) )
2 reex 8133 . . . . 5  |-  RR  e.  _V
32mptex 5865 . . . 4  |-  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )  e.  _V
41, 3eqeltri 2302 . . 3  |-  sqr  e.  _V
5 id 19 . . . 4  |-  ( A  e.  CC  ->  A  e.  CC )
6 cjcl 11359 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
75, 6mulcld 8167 . . 3  |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  CC )
8 fvexg 5646 . . 3  |-  ( ( sqr  e.  _V  /\  ( A  x.  (
* `  A )
)  e.  CC )  ->  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  CC  ->  ( sqr `  ( A  x.  ( * `  A
) ) )  e. 
_V )
10 fveq2 5627 . . . . 5  |-  ( x  =  A  ->  (
* `  x )  =  ( * `  A ) )
11 oveq12 6010 . . . . 5  |-  ( ( x  =  A  /\  ( * `  x
)  =  ( * `
 A ) )  ->  ( x  x.  ( * `  x
) )  =  ( A  x.  ( * `
 A ) ) )
1210, 11mpdan 421 . . . 4  |-  ( x  =  A  ->  (
x  x.  ( * `
 x ) )  =  ( A  x.  ( * `  A
) ) )
1312fveq2d 5631 . . 3  |-  ( x  =  A  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
14 df-abs 11510 . . 3  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
1513, 14fvmptg 5710 . 2  |-  ( ( A  e.  CC  /\  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
169, 15mpdan 421 1  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318   iota_crio 5953  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    x. cmul 8004    <_ cle 8182   2c2 9161   ^cexp 10760   *ccj 11350   sqrcsqrt 11507   abscabs 11508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722  df-cj 11353  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  absneg  11561  abscl  11562  abscj  11563  absvalsq  11564  absval2  11568  abs0  11569  absi  11570  absge0  11571  absrpclap  11572  absmul  11580  absid  11582  absre  11588  absf  11621
  Copyright terms: Public domain W3C validator