ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval Unicode version

Theorem absval 11041
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )

Proof of Theorem absval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 11038 . . . 4  |-  sqr  =  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^
2 )  =  x  /\  0  <_  y
) ) )
2 reex 7974 . . . . 5  |-  RR  e.  _V
32mptex 5762 . . . 4  |-  ( x  e.  RR  |->  ( iota_ y  e.  RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )  e.  _V
41, 3eqeltri 2262 . . 3  |-  sqr  e.  _V
5 id 19 . . . 4  |-  ( A  e.  CC  ->  A  e.  CC )
6 cjcl 10888 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
75, 6mulcld 8007 . . 3  |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  CC )
8 fvexg 5553 . . 3  |-  ( ( sqr  e.  _V  /\  ( A  x.  (
* `  A )
)  e.  CC )  ->  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  CC  ->  ( sqr `  ( A  x.  ( * `  A
) ) )  e. 
_V )
10 fveq2 5534 . . . . 5  |-  ( x  =  A  ->  (
* `  x )  =  ( * `  A ) )
11 oveq12 5904 . . . . 5  |-  ( ( x  =  A  /\  ( * `  x
)  =  ( * `
 A ) )  ->  ( x  x.  ( * `  x
) )  =  ( A  x.  ( * `
 A ) ) )
1210, 11mpdan 421 . . . 4  |-  ( x  =  A  ->  (
x  x.  ( * `
 x ) )  =  ( A  x.  ( * `  A
) ) )
1312fveq2d 5538 . . 3  |-  ( x  =  A  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
14 df-abs 11039 . . 3  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
1513, 14fvmptg 5612 . 2  |-  ( ( A  e.  CC  /\  ( sqr `  ( A  x.  ( * `  A ) ) )  e.  _V )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
169, 15mpdan 421 1  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752   class class class wbr 4018    |-> cmpt 4079   ` cfv 5235   iota_crio 5850  (class class class)co 5895   CCcc 7838   RRcr 7839   0cc0 7840    x. cmul 7845    <_ cle 8022   2c2 8999   ^cexp 10549   *ccj 10879   sqrcsqrt 11036   abscabs 11037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-sub 8159  df-neg 8160  df-reap 8561  df-cj 10882  df-rsqrt 11038  df-abs 11039
This theorem is referenced by:  absneg  11090  abscl  11091  abscj  11092  absvalsq  11093  absval2  11097  abs0  11098  absi  11099  absge0  11100  absrpclap  11101  absmul  11109  absid  11111  absre  11117  absf  11150
  Copyright terms: Public domain W3C validator