| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > absval | Unicode version | ||
| Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsqrt 11424 |
. . . 4
| |
| 2 | reex 8094 |
. . . . 5
| |
| 3 | 2 | mptex 5833 |
. . . 4
|
| 4 | 1, 3 | eqeltri 2280 |
. . 3
|
| 5 | id 19 |
. . . 4
| |
| 6 | cjcl 11274 |
. . . 4
| |
| 7 | 5, 6 | mulcld 8128 |
. . 3
|
| 8 | fvexg 5618 |
. . 3
| |
| 9 | 4, 7, 8 | sylancr 414 |
. 2
|
| 10 | fveq2 5599 |
. . . . 5
| |
| 11 | oveq12 5976 |
. . . . 5
| |
| 12 | 10, 11 | mpdan 421 |
. . . 4
|
| 13 | 12 | fveq2d 5603 |
. . 3
|
| 14 | df-abs 11425 |
. . 3
| |
| 15 | 13, 14 | fvmptg 5678 |
. 2
|
| 16 | 9, 15 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 df-cj 11268 df-rsqrt 11424 df-abs 11425 |
| This theorem is referenced by: absneg 11476 abscl 11477 abscj 11478 absvalsq 11479 absval2 11483 abs0 11484 absi 11485 absge0 11486 absrpclap 11487 absmul 11495 absid 11497 absre 11503 absf 11536 |
| Copyright terms: Public domain | W3C validator |