ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-concat Unicode version

Definition df-concat 11022
Description: Define the concatenation operator which combines two words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
df-concat  |- ++  =  ( s  e.  _V , 
t  e.  _V  |->  ( x  e.  ( 0..^ ( ( `  s
)  +  ( `  t
) ) )  |->  if ( x  e.  ( 0..^ ( `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( `  s ) ) ) ) ) )
Distinct variable group:    t, s, x

Detailed syntax breakdown of Definition df-concat
StepHypRef Expression
1 cconcat 11021 . 2  class ++
2 vs . . 3  setvar  s
3 vt . . 3  setvar  t
4 cvv 2771 . . 3  class  _V
5 vx . . . 4  setvar  x
6 cc0 7907 . . . . 5  class  0
72cv 1371 . . . . . . 7  class  s
8 chash 10901 . . . . . . 7  class
97, 8cfv 5268 . . . . . 6  class  ( `  s
)
103cv 1371 . . . . . . 7  class  t
1110, 8cfv 5268 . . . . . 6  class  ( `  t
)
12 caddc 7910 . . . . . 6  class  +
139, 11, 12co 5934 . . . . 5  class  ( ( `  s )  +  ( `  t ) )
14 cfzo 10246 . . . . 5  class ..^
156, 13, 14co 5934 . . . 4  class  ( 0..^ ( ( `  s
)  +  ( `  t
) ) )
165cv 1371 . . . . . 6  class  x
176, 9, 14co 5934 . . . . . 6  class  ( 0..^ ( `  s )
)
1816, 17wcel 2175 . . . . 5  wff  x  e.  ( 0..^ ( `  s
) )
1916, 7cfv 5268 . . . . 5  class  ( s `
 x )
20 cmin 8225 . . . . . . 7  class  -
2116, 9, 20co 5934 . . . . . 6  class  ( x  -  ( `  s
) )
2221, 10cfv 5268 . . . . 5  class  ( t `
 ( x  -  ( `  s ) ) )
2318, 19, 22cif 3570 . . . 4  class  if ( x  e.  ( 0..^ ( `  s )
) ,  ( s `
 x ) ,  ( t `  (
x  -  ( `  s
) ) ) )
245, 15, 23cmpt 4104 . . 3  class  ( x  e.  ( 0..^ ( ( `  s )  +  ( `  t )
) )  |->  if ( x  e.  ( 0..^ ( `  s )
) ,  ( s `
 x ) ,  ( t `  (
x  -  ( `  s
) ) ) ) )
252, 3, 4, 4, 24cmpo 5936 . 2  class  ( s  e.  _V ,  t  e.  _V  |->  ( x  e.  ( 0..^ ( ( `  s )  +  ( `  t )
) )  |->  if ( x  e.  ( 0..^ ( `  s )
) ,  ( s `
 x ) ,  ( t `  (
x  -  ( `  s
) ) ) ) ) )
261, 25wceq 1372 1  wff ++  =  ( s  e.  _V , 
t  e.  _V  |->  ( x  e.  ( 0..^ ( ( `  s
)  +  ( `  t
) ) )  |->  if ( x  e.  ( 0..^ ( `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( `  s ) ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  ccatfvalfi  11023
  Copyright terms: Public domain W3C validator