Home Intuitionistic Logic ExplorerTheorem List (p. 112 of 133) < Previous  Next > Browser slow? Try the Unicode version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremiserex 11101* An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)

Theoremisermulc2 11102* Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)

Theoremclimlec2 11103* Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)

Theoremiserle 11104* Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)

Theoremiserge0 11105* The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)

Theoremclimub 11106* The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)

Theoremclimserle 11107* The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)

Theoremiser3shft 11108* Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)

Theoremclimcau 11109* A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11112). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)

Theoremclimrecvg1n 11110* A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within of the nth term, where is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)

Theoremclimcvg1nlem 11111* Lemma for climcvg1n 11112. We construct sequences of the real and imaginary parts of each term of , show those converge, and use that to show that converges. (Contributed by Jim Kingdon, 24-Aug-2021.)

Theoremclimcvg1n 11112* A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within of the nth term, where is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)

Theoremclimcaucn 11113* A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11109 but adds the part that is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)

Theoremserf0 11114* If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)

4.8.2  Finite and infinite sums

Syntaxcsu 11115 Extend class notation to include finite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.)

Definitiondf-sumdc 11116* Define the sum of a series with an index set of integers . is normally a free variable in , i.e. can be thought of as . This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an expression so that we only need to be defined where . In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e. finite sets of integers). Examples: means , and means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11284). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
DECID

Theoremsumeq1 11117 Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)

Theoremnfsum1 11118 Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)

Theoremnfsum 11119 Bound-variable hypothesis builder for sum: if is (effectively) not free in and , it is not free in . (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)

Theoremsumdc 11120* Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
DECID               DECID

Theoremsumeq2 11121* Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)

Theoremcbvsum 11122 Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)

Theoremcbvsumv 11123* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)

Theoremcbvsumi 11124* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)

Theoremsumeq1i 11125* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)

Theoremsumeq2i 11126* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)

Theoremsumeq12i 11127* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)

Theoremsumeq1d 11128* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)

Theoremsumeq2d 11129* Equality deduction for sum. Note that unlike sumeq2dv 11130, may occur in . (Contributed by NM, 1-Nov-2005.)

Theoremsumeq2dv 11130* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)

Theoremsumeq2ad 11131* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)

Theoremsumeq2sdv 11132* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)

Theorem2sumeq2dv 11133* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)

Theoremsumeq12dv 11134* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)

Theoremsumeq12rdv 11135* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)

Theoremsumfct 11136* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)

Theoremfz1f1o 11137* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)

Theoremsumrbdclem 11138* Lemma for sumrbdc 11140. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
DECID

Theoremfsum3cvg 11139* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
DECID

Theoremsumrbdc 11140* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
DECID        DECID

Theoremisummolemnm 11141* Lemma for summodc 11145. (Contributed by Jim Kingdon, 15-Aug-2022.)

Theoremsummodclem3 11142* Lemma for summodc 11145. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)

Theoremsummodclem2a 11143* Lemma for summodc 11145. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
DECID

Theoremsummodclem2 11144* Lemma for summodc 11145. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
DECID

Theoremsummodc 11145* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
DECID

Theoremzsumdc 11146* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
DECID

Theoremisum 11147* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)

Theoremfsumgcl 11148* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)

Theoremfsum3 11149* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)

Theoremsum0 11150 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)

Theoremisumz 11151* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
DECID

Theoremfsumf1o 11152* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)

Theoremisumss 11153* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
DECID                      DECID

Theoremfisumss 11154* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
DECID

Theoremisumss2 11155* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set and the added zeroes compose the rest of the containing set which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
DECID               DECID

Theoremfsum3cvg2 11156* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
DECID

Theoremfsumsersdc 11157* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
DECID

Theoremfsum3cvg3 11158* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
DECID

Theoremfsum3ser 11159* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11174 and fsump1 11182, which should make our notation clear and from which, along with closure fsumcl 11162, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)

Theoremfsumcl2lem 11160* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)

Theoremfsumcllem 11161* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)

Theoremfsumcl 11162* Closure of a finite sum of complex numbers . (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)

Theoremfsumrecl 11163* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)

Theoremfsumzcl 11164* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)

Theoremfsumnn0cl 11165* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)

Theoremfsumrpcl 11166* Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.)

Theoremfsumzcl2 11167* A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.)

Theoremfsumadd 11168* The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)

Theoremfsumsplit 11169* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)

Theoremfsumsplitf 11170* Split a sum into two parts. A version of fsumsplit 11169 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)

Theoremsumsnf 11171* A sum of a singleton is the term. A version of sumsn 11173 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)

Theoremfsumsplitsn 11172* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)

Theoremsumsn 11173* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)

Theoremfsum1 11174* The finite sum of from to (i.e. a sum with only one term) is i.e. . (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)

Theoremsumpr 11175* A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)

Theoremsumtp 11176* A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)

Theoremsumsns 11177* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)

Theoremfsumm1 11178* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)

Theoremfzosump1 11179* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.)
..^ ..^

Theoremfsum1p 11180* Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremfsumsplitsnun 11181* Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)

Theoremfsump1 11182* The addition of the next term in a finite sum of is the current term plus i.e. . (Contributed by NM, 4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)

Theoremisumclim 11183* An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremisumclim2 11184* A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremisumclim3 11185* The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that must not occur in . (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremsumnul 11186* The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremisumcl 11187* The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremisummulc2 11188* An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremisummulc1 11189* An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremisumdivapc 11190* An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
#

Theoremisumrecl 11191* The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.)

Theoremisumge0 11192* An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.)

Theoremisumadd 11193* Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)

Theoremsumsplitdc 11194* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
DECID        DECID

Theoremfsump1i 11195* Optimized version of fsump1 11182 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)

Theoremfsum2dlemstep 11196* Lemma for fsum2d 11197- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)

Theoremfsum2d 11197* Write a double sum as a sum over a two-dimensional region. Note that is a function of . (Contributed by Mario Carneiro, 27-Apr-2014.)

Theoremfsumxp 11198* Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.)

Theoremfsumcnv 11199* Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)

Theoremfisumcom2 11200* Interchange order of summation. Note that and are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
 Copyright terms: Public domain < Previous  Next >