HomeHome Intuitionistic Logic Explorer
Theorem List (p. 112 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcjcl 11101 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  e.  CC )
 
Theoremreval 11102 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( ( A  +  ( * `  A ) )  / 
 2 ) )
 
Theoremimval 11103 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( A  /  _i ) ) )
 
Theoremimre 11104 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( -u _i  x.  A ) ) )
 
Theoremreim 11105 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( Im `  ( _i  x.  A ) ) )
 
Theoremrecl 11106 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  e.  RR )
 
Theoremimcl 11107 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  e.  RR )
 
Theoremref 11108 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Re : CC --> RR
 
Theoremimf 11109 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Im : CC --> RR
 
Theoremcrre 11110 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrim 11111 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremreplim 11112 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremim 11113 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremreim0 11114 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  RR  ->  ( Im `  A )  =  0 )
 
Theoremreim0b 11115 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
 
Theoremrereb 11116 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
 
Theoremmulreap 11117 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e. 
 RR ) )
 
Theoremrere 11118 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( A  e.  RR  ->  ( Re `  A )  =  A )
 
Theoremcjreb 11119 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
 
Theoremrecj 11120 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  ( * `  A ) )  =  ( Re `  A ) )
 
Theoremreneg 11121 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  -u A )  =  -u ( Re
 `  A ) )
 
Theoremreadd 11122 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B ) )  =  (
 ( Re `  A )  +  ( Re `  B ) ) )
 
Theoremresub 11123 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  -  B ) )  =  (
 ( Re `  A )  -  ( Re `  B ) ) )
 
Theoremremullem 11124 Lemma for remul 11125, immul 11132, and cjmul 11138. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re
 `  ( A  x.  B ) )  =  ( ( ( Re
 `  A )  x.  ( Re `  B ) )  -  (
 ( Im `  A )  x.  ( Im `  B ) ) ) 
 /\  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) ) )
 
Theoremremul 11125 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im
 `  A )  x.  ( Im `  B ) ) ) )
 
Theoremremul2 11126 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremredivap 11127 Real part of a division. Related to remul2 11126. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Re `  ( A 
 /  B ) )  =  ( ( Re
 `  A )  /  B ) )
 
Theoremimcj 11128 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  ( * `  A ) )  =  -u ( Im `  A ) )
 
Theoremimneg 11129 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  -u A )  =  -u ( Im
 `  A ) )
 
Theoremimadd 11130 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B ) )  =  (
 ( Im `  A )  +  ( Im `  B ) ) )
 
Theoremimsub 11131 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  -  B ) )  =  (
 ( Im `  A )  -  ( Im `  B ) ) )
 
Theoremimmul 11132 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) ) )
 
Theoremimmul2 11133 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremimdivap 11134 Imaginary part of a division. Related to immul2 11133. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Im `  ( A 
 /  B ) )  =  ( ( Im
 `  A )  /  B ) )
 
Theoremcjre 11135 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
 |-  ( A  e.  RR  ->  ( * `  A )  =  A )
 
Theoremcjcj 11136 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( * `  ( * `  A ) )  =  A )
 
Theoremcjadd 11137 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B ) )  =  (
 ( * `  A )  +  ( * `  B ) ) )
 
Theoremcjmul 11138 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B ) )  =  (
 ( * `  A )  x.  ( * `  B ) ) )
 
Theoremipcnval 11139 Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremcjmulrcl 11140 A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  RR )
 
Theoremcjmulval 11141 A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) ) )
 
Theoremcjmulge0 11142 A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  0  <_  ( A  x.  ( * `  A ) ) )
 
Theoremcjneg 11143 Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( * `  -u A )  =  -u ( * `
  A ) )
 
Theoremaddcj 11144 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) ) )
 
Theoremcjsub 11145 Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  -  B ) )  =  (
 ( * `  A )  -  ( * `  B ) ) )
 
Theoremcjexp 11146 Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( * `  ( A ^ N ) )  =  ( ( * `  A ) ^ N ) )
 
Theoremimval2 11147 The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( ( A  -  ( * `  A ) )  /  ( 2  x.  _i ) ) )
 
Theoremre0 11148 The real part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Re `  0
 )  =  0
 
Theoremim0 11149 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Im `  0
 )  =  0
 
Theoremre1 11150 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  1
 )  =  1
 
Theoremim1 11151 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  1
 )  =  0
 
Theoremrei 11152 The real part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  _i )  =  0
 
Theoremimi 11153 The imaginary part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  _i )  =  1
 
Theoremcj0 11154 The conjugate of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( * `  0
 )  =  0
 
Theoremcji 11155 The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
 |-  ( * `  _i )  =  -u _i
 
Theoremcjreim 11156 The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B ) ) )
 
Theoremcjreim2 11157 The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  -  ( _i  x.  B ) ) )  =  ( A  +  ( _i  x.  B ) ) )
 
Theoremcj11 11158 Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `
  A )  =  ( * `  B ) 
 <->  A  =  B ) )
 
Theoremcjap 11159 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `
  A ) #  ( * `  B )  <->  A #  B ) )
 
Theoremcjap0 11160 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  ( * `  A ) #  0 )
 )
 
Theoremcjne0 11161 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 11160 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
 |-  ( A  e.  CC  ->  ( A  =/=  0  <->  ( * `  A )  =/=  0 ) )
 
Theoremcjdivap 11162 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( * `  ( A 
 /  B ) )  =  ( ( * `
  A )  /  ( * `  B ) ) )
 
Theoremcnrecnv 11163* The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 9771. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   =>    |-  `' F  =  ( z  e.  CC  |->  <.
 ( Re `  z
 ) ,  ( Im
 `  z ) >. )
 
Theoremrecli 11164 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  A )  e.  RR
 
Theoremimcli 11165 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  A )  e.  RR
 
Theoremcjcli 11166 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( * `  A )  e.  CC
 
Theoremreplimi 11167 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   =>    |-  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )
 
Theoremcjcji 11168 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( * `  ( * `  A ) )  =  A
 
Theoremreim0bi 11169 A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  e.  RR 
 <->  ( Im `  A )  =  0 )
 
Theoremrerebi 11170 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  e.  RR 
 <->  ( Re `  A )  =  A )
 
Theoremcjrebi 11171 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  e.  RR 
 <->  ( * `  A )  =  A )
 
Theoremrecji 11172 Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  ( * `  A ) )  =  ( Re
 `  A )
 
Theoremimcji 11173 Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  ( * `  A ) )  =  -u ( Im `  A )
 
Theoremcjmulrcli 11174 A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  x.  ( * `  A ) )  e.  RR
 
Theoremcjmulvali 11175 A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  x.  ( * `  A ) )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) )
 
Theoremcjmulge0i 11176 A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.)
 |-  A  e.  CC   =>    |-  0  <_  ( A  x.  ( * `  A ) )
 
Theoremrenegi 11177 Real part of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  -u A )  =  -u ( Re `  A )
 
Theoremimnegi 11178 Imaginary part of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  -u A )  =  -u ( Im `  A )
 
Theoremcjnegi 11179 Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( * `  -u A )  =  -u ( * `  A )
 
Theoremaddcji 11180 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) )
 
Theoremreaddi 11181 Real part distributes over addition. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Re `  ( A  +  B )
 )  =  ( ( Re `  A )  +  ( Re `  B ) )
 
Theoremimaddi 11182 Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Im `  ( A  +  B )
 )  =  ( ( Im `  A )  +  ( Im `  B ) )
 
Theoremremuli 11183 Real part of a product. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Re `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  ( Im `  B ) ) )
 
Theoremimmuli 11184 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Im `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  ( Re `  B ) ) )
 
Theoremcjaddi 11185 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( * `  ( A  +  B )
 )  =  ( ( * `  A )  +  ( * `  B ) )
 
Theoremcjmuli 11186 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) )
 
Theoremipcni 11187 Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) )
 
Theoremcjdivapi 11188 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( B #  0  ->  ( * `  ( A 
 /  B ) )  =  ( ( * `
  A )  /  ( * `  B ) ) )
 
Theoremcrrei 11189 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A
 
Theoremcrimi 11190 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B
 
Theoremrecld 11191 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  A )  e. 
 RR )
 
Theoremimcld 11192 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  A )  e. 
 RR )
 
Theoremcjcld 11193 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  A )  e. 
 CC )
 
Theoremreplimd 11194 Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremimd 11195 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremcjcjd 11196 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  ( * `  A ) )  =  A )
 
Theoremreim0bd 11197 A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( Im `  A )  =  0 )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrerebd 11198 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( Re `  A )  =  A )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremcjrebd 11199 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( * `  A )  =  A )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremcjne0d 11200 A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 11201 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  ( * `  A )  =/=  0 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >