HomeHome Intuitionistic Logic Explorer
Theorem List (p. 112 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclimsubc1 11101* Limit of a constant  C subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  -  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  -  C ) )
 
Theoremclimsubc2 11102* Limit of a constant  C minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  -  A ) )
 
Theoremclimle 11103* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremclimsqz 11104* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  <_  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimsqz2 11105* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  <_  ( G `  k ) )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclim2ser 11106* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M (  +  ,  F ) `  N ) ) )
 
Theoremclim2ser2 11107* The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( A  +  (  seq M (  +  ,  F ) `  N ) ) )
 
Theoremiserex 11108* An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
 
Theoremisermulc2 11109* Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  G ) 
 ~~>  ( C  x.  A ) )
 
Theoremclimlec2 11110* Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  F  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremiserle 11111* Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremiserge0 11112* The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremclimub 11113* The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  A )
 
Theoremclimserle 11114* The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  N )  <_  A )
 
Theoremiser3shft 11115* Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
 
Theoremclimcau 11116* A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11119). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  ) 
 ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
 
Theoremclimrecvg1n 11117* A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcvg1nlem 11118* Lemma for climcvg1n 11119. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
 |-  ( ph  ->  F : NN --> CC )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   &    |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `  x ) ) )   &    |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
  x ) ) )   &    |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `
  x ) ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcvg1n 11119* A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
 |-  ( ph  ->  F : NN --> CC )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcaucn 11120* A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11116 but adds the part that  ( F `  k ) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  ) 
 ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
  k )  -  ( F `  j ) ) )  <  x ) )
 
Theoremserf0 11121* If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  F  ~~>  0 )
 
4.8.2  Finite and infinite sums
 
Syntaxcsu 11122 Extend class notation to include finite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.)
 class  sum_ k  e.  A  B
 
Definitiondf-sumdc 11123* Define the sum of a series with an index set of integers  A.  k is normally a free variable in  B, i.e.  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e. finite sets of integers). Examples: 
sum_ k  e.  {
1 ,  2 ,  4 }  k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN  (
1  /  ( 2 ^ k ) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11291). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
 |- 
 sum_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
 ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  x  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m ) ) ) )
 
Theoremsumeq1 11124 Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  ( A  =  B  -> 
 sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremnfsum1 11125 Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  F/_ k A   =>    |-  F/_ k sum_ k  e.  A  B
 
Theoremnfsum 11126 Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x sum_ k  e.  A  B
 
Theoremsumdc 11127* Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. x  e.  ( ZZ>= `  M )DECID  x  e.  A )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  -> DECID  N  e.  A )
 
Theoremsumeq2 11128* Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( A. k  e.  A  B  =  C  -> 
 sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremcbvsum 11129 Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 sum_ j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremcbvsumv 11130* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  sum_
 j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremcbvsumi 11131* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
 
Theoremsumeq1i 11132* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
 |-  A  =  B   =>    |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
 
Theoremsumeq2i 11133* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  sum_
 k  e.  A  B  =  sum_ k  e.  A  C
 
Theoremsumeq12i 11134* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  sum_ k  e.  A  C  =  sum_ k  e.  B  D
 
Theoremsumeq1d 11135* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremsumeq2d 11136* Equality deduction for sum. Note that unlike sumeq2dv 11137, 
k may occur in  ph. (Contributed by NM, 1-Nov-2005.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2dv 11137* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2ad 11138* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theoremsumeq2sdv 11139* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C )
 
Theorem2sumeq2dv 11140* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ j  e.  A  sum_ k  e.  B  D )
 
Theoremsumeq12dv 11141* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  D )
 
Theoremsumeq12rdv 11142* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  D )
 
Theoremsumfct 11143* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
 |-  ( A. k  e.  A  B  e.  CC  -> 
 sum_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  sum_ k  e.  A  B )
 
Theoremfz1f1o 11144* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
 ( `  A )  e. 
 NN  /\  E. f  f : ( 1 ... ( `  A )
 )
 -1-1-onto-> A ) ) )
 
Theoremnnf1o 11145 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
 |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )   &    |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )   &    |-  ( ph  ->  G : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  N  =  M )
 
Theoremsumrbdclem 11146* Lemma for sumrbdc 11148. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  +  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  +  ,  F ) )
 
Theoremfsum3cvg 11147* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremsumrbdc 11148* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C )
 )
 
Theoremsummodclem3 11149* Lemma for summodc 11152. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  (  seq 1 (  +  ,  G ) `  M )  =  (  seq 1 (  +  ,  H ) `  N ) )
 
Theoremsummodclem2a 11150* Lemma for summodc 11152. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `
  n )  /  k ]_ B ,  0 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  (  seq 1
 (  +  ,  G ) `  N ) )
 
Theoremsummodclem2 11151* Lemma for summodc 11152. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  y  =  ( 
 seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y ) )
 
Theoremsummodc 11152* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) , 
 [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x )  \/  E. m  e.  NN  E. f
 ( f : ( 1 ... m ) -1-1-onto-> A 
 /\  x  =  ( 
 seq 1 (  +  ,  G ) `  m ) ) ) )
 
Theoremzsumdc 11153* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 0 ) )   &    |-  ( ph  ->  A. x  e.  Z DECID  x  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremisum 11154* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  Z  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremfsumgcl 11155* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n )  e.  CC )
 
Theoremfsum3 11156* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 )
 ) ) `  M ) )
 
Theoremsum0 11157 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
 |- 
 sum_ k  e.  (/)  A  =  0
 
Theoremisumz 11158* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  =  0 )
 
Theoremfsumf1o 11159* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
 
Theoremisumss 11160* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremfisumss 11161* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremisumss2 11162* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  A. k  e.  A  C  e.  CC )   &    |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
 
Theoremfsum3cvg2 11163* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremfsumsersdc 11164* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq M (  +  ,  F ) `  N ) )
 
Theoremfsum3cvg3 11165* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremfsum3ser 11166* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11181 and fsump1 11189, which should make our notation clear and from which, along with closure fsumcl 11169, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N ) )
 
Theoremfsumcl2lem 11167* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  S )
 
Theoremfsumcllem 11168* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  0  e.  S )   =>    |-  ( ph  ->  sum_
 k  e.  A  B  e.  S )
 
Theoremfsumcl 11169* Closure of a finite sum of complex numbers  A ( k ). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  CC )
 
Theoremfsumrecl 11170* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR )
 
Theoremfsumzcl 11171* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumnn0cl 11172* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  NN0 )
 
Theoremfsumrpcl 11173* Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR+ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR+ )
 
Theoremfsumzcl2 11174* A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
 |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  -> 
 sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumadd 11175* The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  +  C )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
 
Theoremfsumsplit 11176* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsumsplitf 11177* Split a sum into two parts. A version of fsumsplit 11176 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremsumsnf 11178* A sum of a singleton is the term. A version of sumsn 11180 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsumsplitsn 11179* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  sum_
 k  e.  ( A  u.  { B }
 ) C  =  (
 sum_ k  e.  A  C  +  D )
 )
 
Theoremsumsn 11180* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsum1 11181* The finite sum of  A ( k ) from  k  =  M to  M (i.e. a sum with only one term) is  B i.e.  A ( M ). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  sum_ k  e.  ( M ... M ) A  =  B )
 
Theoremsumpr 11182* A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
 |-  ( k  =  A  ->  C  =  D )   &    |-  ( k  =  B  ->  C  =  E )   &    |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W )
 )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B } C  =  ( D  +  E )
 )
 
Theoremsumtp 11183* A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
 |-  ( k  =  A  ->  D  =  E )   &    |-  ( k  =  B  ->  D  =  F )   &    |-  ( k  =  C  ->  D  =  G )   &    |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X )
 )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =/=  C )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F )  +  G ) )
 
Theoremsumsns 11184* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  sum_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfsumm1 11185* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M
 ... ( N  -  1 ) ) A  +  B ) )
 
Theoremfzosump1 11186* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ ( N  +  1 ) ) A  =  ( sum_ k  e.  ( M..^ N ) A  +  B ) )
 
Theoremfsum1p 11187* Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
 
Theoremfsumsplitsnun 11188* Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
 |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A ) 
 /\  A. k  e.  ( A  u.  { Z }
 ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z }
 ) B  =  (
 sum_ k  e.  A  B  +  [_ Z  /  k ]_ B ) )
 
Theoremfsump1 11189* The addition of the next term in a finite sum of  A ( k ) is the current term plus  B i.e.  A ( N  +  1 ). (Contributed by NM, 4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 sum_ k  e.  ( M ... N ) A  +  B ) )
 
Theoremisumclim 11190* An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  B )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  B )
 
Theoremisumclim2 11191* A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_
 k  e.  Z  A )
 
Theoremisumclim3 11192* The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that  j must not occur in  A. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ( ph  /\  j  e.  Z ) 
 ->  ( F `  j
 )  =  sum_ k  e.  ( M ... j
 ) A )   =>    |-  ( ph  ->  F  ~~>  sum_
 k  e.  Z  A )
 
Theoremsumnul 11193* The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  -.  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  (/) )
 
Theoremisumcl 11194* The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  e.  CC )
 
Theoremisummulc2 11195* An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A )  =  sum_ k  e.  Z  ( B  x.  A ) )
 
Theoremisummulc1 11196* An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  Z  A  x.  B )  =  sum_ k  e.  Z  ( A  x.  B ) )
 
Theoremisumdivapc 11197* An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  Z  A  /  B )  =  sum_ k  e.  Z  ( A 
 /  B ) )
 
Theoremisumrecl 11198* The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  e.  RR )
 
Theoremisumge0 11199* An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z )  ->  0  <_  A )   =>    |-  ( ph  ->  0  <_ 
 sum_ k  e.  Z  A )
 
Theoremisumadd 11200* Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  ( A  +  B )  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >