Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-gsum | Unicode version |
Description: Define the group sum for
the structure of a
finite sequence of
elements whose values are defined by the expression and whose set
of indices is .
It may be viewed as a product (if is a
multiplication), a sum (if is an addition) or any other operation.
The variable is
normally a free variable in (i.e., can
be thought of as ). The definition is meaningful in
different contexts, depending on the size of the index set and
each demanding different properties of .
1. If and has an identity element, then the sum equals this identity. 2. If and is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., , etc. 3. If is a finite set (or is nonzero for finitely many indices) and is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. 4. If is an infinite set and is a Hausdorff topological group, then there is a meaningful sum, but g cannot handle this case. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
df-gsum | g ♯ ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsu 12574 | . 2 g | |
2 | vw | . . 3 | |
3 | vf | . . 3 | |
4 | cvv 2726 | . . 3 | |
5 | vo | . . . 4 | |
6 | vx | . . . . . . . . . 10 | |
7 | 6 | cv 1342 | . . . . . . . . 9 |
8 | vy | . . . . . . . . . 10 | |
9 | 8 | cv 1342 | . . . . . . . . 9 |
10 | 2 | cv 1342 | . . . . . . . . . 10 |
11 | cplusg 12457 | . . . . . . . . . 10 | |
12 | 10, 11 | cfv 5188 | . . . . . . . . 9 |
13 | 7, 9, 12 | co 5842 | . . . . . . . 8 |
14 | 13, 9 | wceq 1343 | . . . . . . 7 |
15 | 9, 7, 12 | co 5842 | . . . . . . . 8 |
16 | 15, 9 | wceq 1343 | . . . . . . 7 |
17 | 14, 16 | wa 103 | . . . . . 6 |
18 | cbs 12394 | . . . . . . 7 | |
19 | 10, 18 | cfv 5188 | . . . . . 6 |
20 | 17, 8, 19 | wral 2444 | . . . . 5 |
21 | 20, 6, 19 | crab 2448 | . . . 4 |
22 | 3 | cv 1342 | . . . . . . 7 |
23 | 22 | crn 4605 | . . . . . 6 |
24 | 5 | cv 1342 | . . . . . 6 |
25 | 23, 24 | wss 3116 | . . . . 5 |
26 | c0g 12573 | . . . . . 6 | |
27 | 10, 26 | cfv 5188 | . . . . 5 |
28 | 22 | cdm 4604 | . . . . . . 7 |
29 | cfz 9944 | . . . . . . . 8 | |
30 | 29 | crn 4605 | . . . . . . 7 |
31 | 28, 30 | wcel 2136 | . . . . . 6 |
32 | vm | . . . . . . . . . . . . 13 | |
33 | 32 | cv 1342 | . . . . . . . . . . . 12 |
34 | vn | . . . . . . . . . . . . 13 | |
35 | 34 | cv 1342 | . . . . . . . . . . . 12 |
36 | 33, 35, 29 | co 5842 | . . . . . . . . . . 11 |
37 | 28, 36 | wceq 1343 | . . . . . . . . . 10 |
38 | 12, 22, 33 | cseq 10380 | . . . . . . . . . . . 12 |
39 | 35, 38 | cfv 5188 | . . . . . . . . . . 11 |
40 | 7, 39 | wceq 1343 | . . . . . . . . . 10 |
41 | 37, 40 | wa 103 | . . . . . . . . 9 |
42 | cuz 9466 | . . . . . . . . . 10 | |
43 | 33, 42 | cfv 5188 | . . . . . . . . 9 |
44 | 41, 34, 43 | wrex 2445 | . . . . . . . 8 |
45 | 44, 32 | wex 1480 | . . . . . . 7 |
46 | 45, 6 | cio 5151 | . . . . . 6 |
47 | c1 7754 | . . . . . . . . . . . 12 | |
48 | chash 10688 | . . . . . . . . . . . . 13 ♯ | |
49 | 9, 48 | cfv 5188 | . . . . . . . . . . . 12 ♯ |
50 | 47, 49, 29 | co 5842 | . . . . . . . . . . 11 ♯ |
51 | vg | . . . . . . . . . . . 12 | |
52 | 51 | cv 1342 | . . . . . . . . . . 11 |
53 | 50, 9, 52 | wf1o 5187 | . . . . . . . . . 10 ♯ |
54 | 22, 52 | ccom 4608 | . . . . . . . . . . . . 13 |
55 | 12, 54, 47 | cseq 10380 | . . . . . . . . . . . 12 |
56 | 49, 55 | cfv 5188 | . . . . . . . . . . 11 ♯ |
57 | 7, 56 | wceq 1343 | . . . . . . . . . 10 ♯ |
58 | 53, 57 | wa 103 | . . . . . . . . 9 ♯ ♯ |
59 | 22 | ccnv 4603 | . . . . . . . . . 10 |
60 | 4, 24 | cdif 3113 | . . . . . . . . . 10 |
61 | 59, 60 | cima 4607 | . . . . . . . . 9 |
62 | 58, 8, 61 | wsbc 2951 | . . . . . . . 8 ♯ ♯ |
63 | 62, 51 | wex 1480 | . . . . . . 7 ♯ ♯ |
64 | 63, 6 | cio 5151 | . . . . . 6 ♯ ♯ |
65 | 31, 46, 64 | cif 3520 | . . . . 5 ♯ ♯ |
66 | 25, 27, 65 | cif 3520 | . . . 4 ♯ ♯ |
67 | 5, 21, 66 | csb 3045 | . . 3 ♯ ♯ |
68 | 2, 3, 4, 4, 67 | cmpo 5844 | . 2 ♯ ♯ |
69 | 1, 68 | wceq 1343 | 1 g ♯ ♯ |
Colors of variables: wff set class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |