Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-gsum | Unicode version |
Description: Define the group sum for
the structure of a
finite sequence of
elements whose values are defined by the expression and whose set
of indices is .
It may be viewed as a product (if is a
multiplication), a sum (if is an addition) or any other operation.
The variable is
normally a free variable in (i.e., can
be thought of as ). The definition is meaningful in
different contexts, depending on the size of the index set and
each demanding different properties of .
1. If and has an identity element, then the sum equals this identity. 2. If and is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., , etc. 3. If is a finite set (or is nonzero for finitely many indices) and is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. 4. If is an infinite set and is a Hausdorff topological group, then there is a meaningful sum, but g cannot handle this case. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
df-gsum | g ♯ ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsu 12597 | . 2 g | |
2 | vw | . . 3 | |
3 | vf | . . 3 | |
4 | cvv 2730 | . . 3 | |
5 | vo | . . . 4 | |
6 | vx | . . . . . . . . . 10 | |
7 | 6 | cv 1347 | . . . . . . . . 9 |
8 | vy | . . . . . . . . . 10 | |
9 | 8 | cv 1347 | . . . . . . . . 9 |
10 | 2 | cv 1347 | . . . . . . . . . 10 |
11 | cplusg 12480 | . . . . . . . . . 10 | |
12 | 10, 11 | cfv 5198 | . . . . . . . . 9 |
13 | 7, 9, 12 | co 5853 | . . . . . . . 8 |
14 | 13, 9 | wceq 1348 | . . . . . . 7 |
15 | 9, 7, 12 | co 5853 | . . . . . . . 8 |
16 | 15, 9 | wceq 1348 | . . . . . . 7 |
17 | 14, 16 | wa 103 | . . . . . 6 |
18 | cbs 12416 | . . . . . . 7 | |
19 | 10, 18 | cfv 5198 | . . . . . 6 |
20 | 17, 8, 19 | wral 2448 | . . . . 5 |
21 | 20, 6, 19 | crab 2452 | . . . 4 |
22 | 3 | cv 1347 | . . . . . . 7 |
23 | 22 | crn 4612 | . . . . . 6 |
24 | 5 | cv 1347 | . . . . . 6 |
25 | 23, 24 | wss 3121 | . . . . 5 |
26 | c0g 12596 | . . . . . 6 | |
27 | 10, 26 | cfv 5198 | . . . . 5 |
28 | 22 | cdm 4611 | . . . . . . 7 |
29 | cfz 9965 | . . . . . . . 8 | |
30 | 29 | crn 4612 | . . . . . . 7 |
31 | 28, 30 | wcel 2141 | . . . . . 6 |
32 | vm | . . . . . . . . . . . . 13 | |
33 | 32 | cv 1347 | . . . . . . . . . . . 12 |
34 | vn | . . . . . . . . . . . . 13 | |
35 | 34 | cv 1347 | . . . . . . . . . . . 12 |
36 | 33, 35, 29 | co 5853 | . . . . . . . . . . 11 |
37 | 28, 36 | wceq 1348 | . . . . . . . . . 10 |
38 | 12, 22, 33 | cseq 10401 | . . . . . . . . . . . 12 |
39 | 35, 38 | cfv 5198 | . . . . . . . . . . 11 |
40 | 7, 39 | wceq 1348 | . . . . . . . . . 10 |
41 | 37, 40 | wa 103 | . . . . . . . . 9 |
42 | cuz 9487 | . . . . . . . . . 10 | |
43 | 33, 42 | cfv 5198 | . . . . . . . . 9 |
44 | 41, 34, 43 | wrex 2449 | . . . . . . . 8 |
45 | 44, 32 | wex 1485 | . . . . . . 7 |
46 | 45, 6 | cio 5158 | . . . . . 6 |
47 | c1 7775 | . . . . . . . . . . . 12 | |
48 | chash 10709 | . . . . . . . . . . . . 13 ♯ | |
49 | 9, 48 | cfv 5198 | . . . . . . . . . . . 12 ♯ |
50 | 47, 49, 29 | co 5853 | . . . . . . . . . . 11 ♯ |
51 | vg | . . . . . . . . . . . 12 | |
52 | 51 | cv 1347 | . . . . . . . . . . 11 |
53 | 50, 9, 52 | wf1o 5197 | . . . . . . . . . 10 ♯ |
54 | 22, 52 | ccom 4615 | . . . . . . . . . . . . 13 |
55 | 12, 54, 47 | cseq 10401 | . . . . . . . . . . . 12 |
56 | 49, 55 | cfv 5198 | . . . . . . . . . . 11 ♯ |
57 | 7, 56 | wceq 1348 | . . . . . . . . . 10 ♯ |
58 | 53, 57 | wa 103 | . . . . . . . . 9 ♯ ♯ |
59 | 22 | ccnv 4610 | . . . . . . . . . 10 |
60 | 4, 24 | cdif 3118 | . . . . . . . . . 10 |
61 | 59, 60 | cima 4614 | . . . . . . . . 9 |
62 | 58, 8, 61 | wsbc 2955 | . . . . . . . 8 ♯ ♯ |
63 | 62, 51 | wex 1485 | . . . . . . 7 ♯ ♯ |
64 | 63, 6 | cio 5158 | . . . . . 6 ♯ ♯ |
65 | 31, 46, 64 | cif 3526 | . . . . 5 ♯ ♯ |
66 | 25, 27, 65 | cif 3526 | . . . 4 ♯ ♯ |
67 | 5, 21, 66 | csb 3049 | . . 3 ♯ ♯ |
68 | 2, 3, 4, 4, 67 | cmpo 5855 | . 2 ♯ ♯ |
69 | 1, 68 | wceq 1348 | 1 g ♯ ♯ |
Colors of variables: wff set class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |