Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-gsum | Unicode version |
Description: Define the group sum for
the structure of a
finite sequence of
elements whose values are defined by the expression and whose set
of indices is .
It may be viewed as a product (if is a
multiplication), a sum (if is an addition) or any other operation.
The variable is
normally a free variable in (i.e., can
be thought of as ). The definition is meaningful in
different contexts, depending on the size of the index set and
each demanding different properties of .
1. If and has an identity element, then the sum equals this identity. 2. If and is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., , etc. 3. If is a finite set (or is nonzero for finitely many indices) and is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. 4. If is an infinite set and is a Hausdorff topological group, then there is a meaningful sum, but g cannot handle this case. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
df-gsum | g ♯ ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsu 12380 | . 2 g | |
2 | vw | . . 3 | |
3 | vf | . . 3 | |
4 | cvv 2712 | . . 3 | |
5 | vo | . . . 4 | |
6 | vx | . . . . . . . . . 10 | |
7 | 6 | cv 1334 | . . . . . . . . 9 |
8 | vy | . . . . . . . . . 10 | |
9 | 8 | cv 1334 | . . . . . . . . 9 |
10 | 2 | cv 1334 | . . . . . . . . . 10 |
11 | cplusg 12263 | . . . . . . . . . 10 | |
12 | 10, 11 | cfv 5170 | . . . . . . . . 9 |
13 | 7, 9, 12 | co 5824 | . . . . . . . 8 |
14 | 13, 9 | wceq 1335 | . . . . . . 7 |
15 | 9, 7, 12 | co 5824 | . . . . . . . 8 |
16 | 15, 9 | wceq 1335 | . . . . . . 7 |
17 | 14, 16 | wa 103 | . . . . . 6 |
18 | cbs 12201 | . . . . . . 7 | |
19 | 10, 18 | cfv 5170 | . . . . . 6 |
20 | 17, 8, 19 | wral 2435 | . . . . 5 |
21 | 20, 6, 19 | crab 2439 | . . . 4 |
22 | 3 | cv 1334 | . . . . . . 7 |
23 | 22 | crn 4587 | . . . . . 6 |
24 | 5 | cv 1334 | . . . . . 6 |
25 | 23, 24 | wss 3102 | . . . . 5 |
26 | c0g 12379 | . . . . . 6 | |
27 | 10, 26 | cfv 5170 | . . . . 5 |
28 | 22 | cdm 4586 | . . . . . . 7 |
29 | cfz 9912 | . . . . . . . 8 | |
30 | 29 | crn 4587 | . . . . . . 7 |
31 | 28, 30 | wcel 2128 | . . . . . 6 |
32 | vm | . . . . . . . . . . . . 13 | |
33 | 32 | cv 1334 | . . . . . . . . . . . 12 |
34 | vn | . . . . . . . . . . . . 13 | |
35 | 34 | cv 1334 | . . . . . . . . . . . 12 |
36 | 33, 35, 29 | co 5824 | . . . . . . . . . . 11 |
37 | 28, 36 | wceq 1335 | . . . . . . . . . 10 |
38 | 12, 22, 33 | cseq 10344 | . . . . . . . . . . . 12 |
39 | 35, 38 | cfv 5170 | . . . . . . . . . . 11 |
40 | 7, 39 | wceq 1335 | . . . . . . . . . 10 |
41 | 37, 40 | wa 103 | . . . . . . . . 9 |
42 | cuz 9439 | . . . . . . . . . 10 | |
43 | 33, 42 | cfv 5170 | . . . . . . . . 9 |
44 | 41, 34, 43 | wrex 2436 | . . . . . . . 8 |
45 | 44, 32 | wex 1472 | . . . . . . 7 |
46 | 45, 6 | cio 5133 | . . . . . 6 |
47 | c1 7733 | . . . . . . . . . . . 12 | |
48 | chash 10649 | . . . . . . . . . . . . 13 ♯ | |
49 | 9, 48 | cfv 5170 | . . . . . . . . . . . 12 ♯ |
50 | 47, 49, 29 | co 5824 | . . . . . . . . . . 11 ♯ |
51 | vg | . . . . . . . . . . . 12 | |
52 | 51 | cv 1334 | . . . . . . . . . . 11 |
53 | 50, 9, 52 | wf1o 5169 | . . . . . . . . . 10 ♯ |
54 | 22, 52 | ccom 4590 | . . . . . . . . . . . . 13 |
55 | 12, 54, 47 | cseq 10344 | . . . . . . . . . . . 12 |
56 | 49, 55 | cfv 5170 | . . . . . . . . . . 11 ♯ |
57 | 7, 56 | wceq 1335 | . . . . . . . . . 10 ♯ |
58 | 53, 57 | wa 103 | . . . . . . . . 9 ♯ ♯ |
59 | 22 | ccnv 4585 | . . . . . . . . . 10 |
60 | 4, 24 | cdif 3099 | . . . . . . . . . 10 |
61 | 59, 60 | cima 4589 | . . . . . . . . 9 |
62 | 58, 8, 61 | wsbc 2937 | . . . . . . . 8 ♯ ♯ |
63 | 62, 51 | wex 1472 | . . . . . . 7 ♯ ♯ |
64 | 63, 6 | cio 5133 | . . . . . 6 ♯ ♯ |
65 | 31, 46, 64 | cif 3505 | . . . . 5 ♯ ♯ |
66 | 25, 27, 65 | cif 3505 | . . . 4 ♯ ♯ |
67 | 5, 21, 66 | csb 3031 | . . 3 ♯ ♯ |
68 | 2, 3, 4, 4, 67 | cmpo 5826 | . 2 ♯ ♯ |
69 | 1, 68 | wceq 1335 | 1 g ♯ ♯ |
Colors of variables: wff set class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |