Detailed syntax breakdown of Definition df-gsum
Step | Hyp | Ref
| Expression |
1 | | cgsu 12569 |
. 2
class
Σg |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | cvv 2725 |
. . 3
class
V |
5 | | vo |
. . . 4
setvar 𝑜 |
6 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
7 | 6 | cv 1342 |
. . . . . . . . 9
class 𝑥 |
8 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
9 | 8 | cv 1342 |
. . . . . . . . 9
class 𝑦 |
10 | 2 | cv 1342 |
. . . . . . . . . 10
class 𝑤 |
11 | | cplusg 12452 |
. . . . . . . . . 10
class
+g |
12 | 10, 11 | cfv 5187 |
. . . . . . . . 9
class
(+g‘𝑤) |
13 | 7, 9, 12 | co 5841 |
. . . . . . . 8
class (𝑥(+g‘𝑤)𝑦) |
14 | 13, 9 | wceq 1343 |
. . . . . . 7
wff (𝑥(+g‘𝑤)𝑦) = 𝑦 |
15 | 9, 7, 12 | co 5841 |
. . . . . . . 8
class (𝑦(+g‘𝑤)𝑥) |
16 | 15, 9 | wceq 1343 |
. . . . . . 7
wff (𝑦(+g‘𝑤)𝑥) = 𝑦 |
17 | 14, 16 | wa 103 |
. . . . . 6
wff ((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
18 | | cbs 12390 |
. . . . . . 7
class
Base |
19 | 10, 18 | cfv 5187 |
. . . . . 6
class
(Base‘𝑤) |
20 | 17, 8, 19 | wral 2443 |
. . . . 5
wff
∀𝑦 ∈
(Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) |
21 | 20, 6, 19 | crab 2447 |
. . . 4
class {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} |
22 | 3 | cv 1342 |
. . . . . . 7
class 𝑓 |
23 | 22 | crn 4604 |
. . . . . 6
class ran 𝑓 |
24 | 5 | cv 1342 |
. . . . . 6
class 𝑜 |
25 | 23, 24 | wss 3115 |
. . . . 5
wff ran 𝑓 ⊆ 𝑜 |
26 | | c0g 12568 |
. . . . . 6
class
0g |
27 | 10, 26 | cfv 5187 |
. . . . 5
class
(0g‘𝑤) |
28 | 22 | cdm 4603 |
. . . . . . 7
class dom 𝑓 |
29 | | cfz 9940 |
. . . . . . . 8
class
... |
30 | 29 | crn 4604 |
. . . . . . 7
class ran
... |
31 | 28, 30 | wcel 2136 |
. . . . . 6
wff dom 𝑓 ∈ ran ... |
32 | | vm |
. . . . . . . . . . . . 13
setvar 𝑚 |
33 | 32 | cv 1342 |
. . . . . . . . . . . 12
class 𝑚 |
34 | | vn |
. . . . . . . . . . . . 13
setvar 𝑛 |
35 | 34 | cv 1342 |
. . . . . . . . . . . 12
class 𝑛 |
36 | 33, 35, 29 | co 5841 |
. . . . . . . . . . 11
class (𝑚...𝑛) |
37 | 28, 36 | wceq 1343 |
. . . . . . . . . 10
wff dom 𝑓 = (𝑚...𝑛) |
38 | 12, 22, 33 | cseq 10376 |
. . . . . . . . . . . 12
class seq𝑚((+g‘𝑤), 𝑓) |
39 | 35, 38 | cfv 5187 |
. . . . . . . . . . 11
class (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
40 | 7, 39 | wceq 1343 |
. . . . . . . . . 10
wff 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) |
41 | 37, 40 | wa 103 |
. . . . . . . . 9
wff (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
42 | | cuz 9462 |
. . . . . . . . . 10
class
ℤ≥ |
43 | 33, 42 | cfv 5187 |
. . . . . . . . 9
class
(ℤ≥‘𝑚) |
44 | 41, 34, 43 | wrex 2444 |
. . . . . . . 8
wff
∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
45 | 44, 32 | wex 1480 |
. . . . . . 7
wff
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) |
46 | 45, 6 | cio 5150 |
. . . . . 6
class
(℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) |
47 | | c1 7750 |
. . . . . . . . . . . 12
class
1 |
48 | | chash 10684 |
. . . . . . . . . . . . 13
class
♯ |
49 | 9, 48 | cfv 5187 |
. . . . . . . . . . . 12
class
(♯‘𝑦) |
50 | 47, 49, 29 | co 5841 |
. . . . . . . . . . 11
class
(1...(♯‘𝑦)) |
51 | | vg |
. . . . . . . . . . . 12
setvar 𝑔 |
52 | 51 | cv 1342 |
. . . . . . . . . . 11
class 𝑔 |
53 | 50, 9, 52 | wf1o 5186 |
. . . . . . . . . 10
wff 𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 |
54 | 22, 52 | ccom 4607 |
. . . . . . . . . . . . 13
class (𝑓 ∘ 𝑔) |
55 | 12, 54, 47 | cseq 10376 |
. . . . . . . . . . . 12
class
seq1((+g‘𝑤), (𝑓 ∘ 𝑔)) |
56 | 49, 55 | cfv 5187 |
. . . . . . . . . . 11
class
(seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)) |
57 | 7, 56 | wceq 1343 |
. . . . . . . . . 10
wff 𝑥 =
(seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)) |
58 | 53, 57 | wa 103 |
. . . . . . . . 9
wff (𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
59 | 22 | ccnv 4602 |
. . . . . . . . . 10
class ◡𝑓 |
60 | 4, 24 | cdif 3112 |
. . . . . . . . . 10
class (V
∖ 𝑜) |
61 | 59, 60 | cima 4606 |
. . . . . . . . 9
class (◡𝑓 “ (V ∖ 𝑜)) |
62 | 58, 8, 61 | wsbc 2950 |
. . . . . . . 8
wff
[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
63 | 62, 51 | wex 1480 |
. . . . . . 7
wff
∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))) |
64 | 63, 6 | cio 5150 |
. . . . . 6
class
(℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))) |
65 | 31, 46, 64 | cif 3519 |
. . . . 5
class if(dom
𝑓 ∈ ran ...,
(℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))) |
66 | 25, 27, 65 | cif 3519 |
. . . 4
class if(ran
𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))))) |
67 | 5, 21, 66 | csb 3044 |
. . 3
class
⦋{𝑥
∈ (Base‘𝑤)
∣ ∀𝑦 ∈
(Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦)))))) |
68 | 2, 3, 4, 4, 67 | cmpo 5843 |
. 2
class (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
69 | 1, 68 | wceq 1343 |
1
wff
Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |