HomeHome Intuitionistic Logic Explorer
Theorem List (p. 128 of 144)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmndlrid 12701 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X )
 )
 
Theoremmndlid 12702 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremmndrid 12703 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremismndd 12704* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  .0.  )  =  x )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremmndpfo 12705 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  Mnd  ->  .+^ 
 : ( B  X.  B ) -onto-> B )
 
Theoremmndfo 12706 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  : ( B  X.  B )
 -onto-> B )
 
Theoremmndpropd 12707* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
 
Theoremmndprop 12708 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Mnd  <->  L  e.  Mnd )
 
Theoremmndinvmod 12709* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
 
Theoremmnd1 12710 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Mnd )
 
Theoremmnd1id 12711 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
 
7.1.5  Monoid homomorphisms and submonoids
 
Syntaxcmhm 12712 Hom-set generator class for monoids.
 class MndHom
 
Syntaxcsubmnd 12713 Class function taking a monoid to its lattice of submonoids.
 class SubMnd
 
Definitiondf-mhm 12714* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- MndHom  =  ( s  e.  Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
 )  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
 ) y ) )  =  ( ( f `
  x ) (
 +g  `  t )
 ( f `  y
 ) )  /\  (
 f `  ( 0g `  s ) )  =  ( 0g `  t
 ) ) } )
 
Definitiondf-submnd 12715* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- SubMnd  =  ( s  e.  Mnd  |->  { t  e.  ~P ( Base `  s )  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  s
 ) y )  e.  t ) } )
 
Theoremismhm 12716* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  C  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   &    |-  .0.  =  ( 0g `  S )   &    |-  Y  =  ( 0g
 `  T )   =>    |-  ( F  e.  ( S MndHom  T )  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) 
 /\  ( F `  .0.  )  =  Y ) ) )
 
Theoremmhmrcl1 12717 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( F  e.  ( S MndHom  T )  ->  S  e.  Mnd )
 
Theoremmhmrcl2 12718 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( F  e.  ( S MndHom  T )  ->  T  e.  Mnd )
 
Theoremmhmf 12719 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  C  =  (
 Base `  T )   =>    |-  ( F  e.  ( S MndHom  T )  ->  F : B --> C )
 
Theoremmhmpropd 12720* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   =>    |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M ) )
 
Theoremmhmlin 12721 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `
  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
  Y ) ) )
 
Theoremmhm0 12722 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- 
 .0.  =  ( 0g `  S )   &    |-  Y  =  ( 0g `  T )   =>    |-  ( F  e.  ( S MndHom  T )  ->  ( F `  .0.  )  =  Y )
 
Theoremidmhm 12723 The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
 |-  B  =  ( Base `  M )   =>    |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M )
 )
 
Theoremmhmf1o 12724 A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
 |-  B  =  ( Base `  R )   &    |-  C  =  (
 Base `  S )   =>    |-  ( F  e.  ( R MndHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S MndHom  R ) ) )
 
Theoremsubmrcl 12725 Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( S  e.  (SubMnd `  M )  ->  M  e.  Mnd )
 
Theoremissubm 12726* Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  .+  =  ( +g  `  M )   =>    |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
 
Theoremissubmd 12727* Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
 |-  B  =  ( Base `  M )   &    |-  .+  =  ( +g  `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  ( ph  ->  M  e.  Mnd )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\  ( ( x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )   &    |-  (
 z  =  .0.  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  x  ->  ( ps  <->  th ) )   &    |-  (
 z  =  y  ->  ( ps  <->  ta ) )   &    |-  (
 z  =  ( x 
 .+  y )  ->  ( ps  <->  et ) )   =>    |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMnd `  M ) )
 
Theoremmndissubm 12728 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  S  e.  (SubMnd `  G )
 ) )
 
Theoremsubmss 12729 Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  M )   =>    |-  ( S  e.  (SubMnd `  M )  ->  S  C_  B )
 
Theoremsubmid 12730 Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  B  =  ( Base `  M )   =>    |-  ( M  e.  Mnd  ->  B  e.  (SubMnd `  M ) )
 
Theoremsubm0cl 12731 Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- 
 .0.  =  ( 0g `  M )   =>    |-  ( S  e.  (SubMnd `  M )  ->  .0.  e.  S )
 
Theoremsubmcl 12732 Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |- 
 .+  =  ( +g  `  M )   =>    |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
 
Theorem0subm 12733 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G ) )
 
Theoreminsubm 12734 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
 |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M ) )  ->  ( A  i^i  B )  e.  (SubMnd `  M )
 )
 
Theorem0mhm 12735 The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |- 
 .0.  =  ( 0g `  N )   &    |-  B  =  (
 Base `  M )   =>    |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N )
 )
 
Theoremmhmco 12736 The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U )
 )
 
Theoremmhmima 12737 The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M ) )  ->  ( F
 " X )  e.  (SubMnd `  N )
 )
 
Theoremmhmeql 12738 The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S MndHom  T )  /\  G  e.  ( S MndHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
 )
 
7.2  Groups
 
7.2.1  Definition and basic properties
 
Syntaxcgrp 12739 Extend class notation with class of all groups.
 class  Grp
 
Syntaxcminusg 12740 Extend class notation with inverse of group element.
 class  invg
 
Syntaxcsg 12741 Extend class notation with group subtraction (or division) operation.
 class  -g
 
Definitiondf-grp 12742* Define class of all groups. A group is a monoid (df-mnd 12684) whose internal operation is such that every element admits a left inverse (which can be proven to be a two-sided inverse). Thus, a group  G is an algebraic structure formed from a base set of elements (notated  ( Base `  G
) per df-base 12435) and an internal group operation (notated  ( +g  `  G
) per df-plusg 12506). The operation combines any two elements of the group base set and must satisfy the 4 group axioms: closure (the result of the group operation must always be a member of the base set, see grpcl 12747), associativity (so  ( (
a +g  b ) +g  c )  =  ( a +g  ( b +g  c ) ) for any a, b, c, see grpass 12748), identity (there must be an element  e  =  ( 0g `  G
) such that  e +g  a  =  a +g  e  =  a for any a), and inverse (for each element a in the base set, there must be an element  b  =  invg a in the base set such that  a +g  b  =  b +g  a  =  e). It can be proven that the identity element is unique (grpideu 12750). Groups need not be commutative; a commutative group is an Abelian group. Subgroups can often be formed from groups. An example of an (Abelian) group is the set of complex numbers  CC over the group operation  + (addition). Other structures include groups, including unital rings and fields. (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |- 
 Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
 ) a )  =  ( 0g `  g
 ) }
 
Definitiondf-minusg 12743* Define inverse of group element. (Contributed by NM, 24-Aug-2011.)
 |- 
 invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
 ) ( w (
 +g  `  g ) x )  =  ( 0g `  g ) ) ) )
 
Definitiondf-sbg 12744* Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014.)
 |-  -g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g
 ) ( ( invg `  g ) `
  y ) ) ) )
 
Theoremisgrp 12745* The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
 
Theoremgrpmnd 12746 A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e.  Grp  ->  G  e.  Mnd )
 
Theoremgrpcl 12747 Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremgrpass 12748 A group operation is associative. (Contributed by NM, 14-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremgrpinvex 12749* Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  E. y  e.  B  ( y  .+  X )  =  .0.  )
 
Theoremgrpideu 12750* The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  E! u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
 
Theoremgrpmndd 12751 A group is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremgrpcld 12752 Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
Theoremgrpplusf 12753 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  F  =  ( +f `  G )   =>    |-  ( G  e.  Grp  ->  F : ( B  X.  B ) --> B )
 
Theoremgrpplusfo 12754 The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  F  =  ( +f `  G )   =>    |-  ( G  e.  Grp  ->  F : ( B  X.  B ) -onto-> B )
 
Theoremgrppropd 12755* If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
 
Theoremgrpprop 12756 If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Grp  <->  L  e.  Grp )
 
Theoremgrppropstrg 12757 Generalize a specific 2-element group  L to show that any set  K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  ( Base `  K )  =  B   &    |-  ( +g  `  K )  =  .+   &    |-  L  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. }   =>    |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
 
Theoremisgrpd2e 12758* Deduce a group from its properties. In this version of isgrpd2 12759, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 10-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  =  ( 0g `  G ) )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  (
 ( ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpd2 12759* Deduce a group from its properties. 
N (negative) is normally dependent on  x i.e. read it as  N ( x ). Note: normally we don't use a  ph antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2175, but we make an exception for theorems such as isgrpd2 12759 and ismndd 12704 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  =  ( 0g `  G ) )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  (
 ( ph  /\  x  e.  B )  ->  N  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( N  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpde 12760* Deduce a group from its properties. In this version of isgrpd 12761, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpd 12761* Deduce a group from its properties. Unlike isgrpd2 12759, this one goes straight from the base properties rather than going through  Mnd.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  N  e.  B )   &    |-  ( ( ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpi 12762* Properties that determine a group. 
N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 3-Sep-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  (
 ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
 ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  .0.  e.  B   &    |-  ( x  e.  B  ->  (  .0.  .+  x )  =  x )   &    |-  ( x  e.  B  ->  N  e.  B )   &    |-  ( x  e.  B  ->  ( N  .+  x )  =  .0.  )   =>    |-  G  e.  Grp
 
Theoremgrpsgrp 12763 A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
 |-  ( G  e.  Grp  ->  G  e. Smgrp )
 
Theoremdfgrp2 12764* Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 12742, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. n  e.  B  A. x  e.  B  ( ( n 
 .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
 
Theoremdfgrp2e 12765* Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  (
 A. x  e.  B  A. y  e.  B  ( ( x  .+  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )  /\  E. n  e.  B  A. x  e.  B  ( ( n 
 .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
 
Theoremgrpidcl 12766 The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  .0.  e.  B )
 
Theoremgrpbn0 12767 The base set of a group is not empty. It is also inhabited (see grpidcl 12766). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  =/=  (/) )
 
Theoremgrplid 12768 The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremgrprid 12769 The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremgrpn0 12770 A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  ( G  e.  Grp  ->  G  =/=  (/) )
 
Theoremhashfingrpnn 12771 A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
Theoremgrprcan 12772 Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Z )  =  ( Y  .+  Z )  <->  X  =  Y ) )
 
Theoremgrpinveu 12773* The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  E! y  e.  B  ( y  .+  X )  =  .0.  )
 
Theoremgrpid 12774 Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremisgrpid2 12775 Properties showing that an element 
Z is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  ( ( Z  e.  B  /\  ( Z  .+  Z )  =  Z ) 
 <->  .0.  =  Z ) )
 
Theoremgrpidd2 12776* Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 12761. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  (  .0.  .+  x )  =  x )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  .0.  =  ( 0g `  G ) )
 
Theoremgrpinvfvalg 12777* The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
 .+  x )  =  .0.  ) ) )
 
Theoremgrpinvval 12778* The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
 
Theoremgrpinvfng 12779 Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  Fn  B )
 
Theoremgrpsubfvalg 12780* Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
 .+  ( I `  y ) ) ) )
 
Theoremgrpsubval 12781 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  =  ( X  .+  ( I `  Y ) ) )
 
Theoremgrpinvf 12782 The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  N : B --> B )
 
Theoremgrpinvcl 12783 A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  X )  e.  B )
 
Theoremgrplinv 12784 The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( ( N `  X )  .+  X )  =  .0.  )
 
Theoremgrprinv 12785 The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .+  ( N `  X ) )  =  .0.  )
 
Theoremgrpinvid1 12786 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <->  ( X  .+  Y )  =  .0.  ) )
 
Theoremgrpinvid2 12787 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <->  ( Y  .+  X )  =  .0.  ) )
 
Theoremisgrpinv 12788* Properties showing that a function 
M is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( ( M : B
 --> B  /\  A. x  e.  B  ( ( M `
  x )  .+  x )  =  .0.  ) 
 <->  N  =  M ) )
 
Theoremgrplrinv 12789* In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( ( y  .+  x )  =  .0.  /\  ( x  .+  y
 )  =  .0.  )
 )
 
Theoremgrpidinv2 12790* A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  B ) 
 ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A )  /\  E. y  e.  B  ( ( y  .+  A )  =  .0.  /\  ( A  .+  y
 )  =  .0.  )
 ) )
 
Theoremgrpidinv 12791* A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp 
 ->  E. u  e.  B  A. x  e.  B  ( ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x )  =  u  /\  ( x  .+  y
 )  =  u ) ) )
 
Theoremgrpinvid 12792 The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
 
Theoremgrplcan 12793 Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  <->  X  =  Y ) )
 
Theoremgrpasscan1 12794 An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
 ( N `  X )  .+  Y ) )  =  Y )
 
Theoremgrpasscan2 12795 An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )
 
Theoremgrpidrcan 12796 If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  X  <->  Z  =  .0.  ) )
 
Theoremgrpidlcan 12797 If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  X  <->  Z  =  .0.  ) )
 
Theoremgrpinvinv 12798 Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  ( N `  X ) )  =  X )
 
Theoremgrpinvcnv 12799 The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  `' N  =  N )
 
Theoremgrpinv11 12800 The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  =  ( N `  Y )  <->  X  =  Y ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14390
  Copyright terms: Public domain < Previous  Next >