HomeHome Intuitionistic Logic Explorer
Theorem List (p. 128 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubmcl 12701 Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |- 
 .+  =  ( +g  `  M )   =>    |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
 
Theorem0subm 12702 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G ) )
 
Theoreminsubm 12703 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
 |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M ) )  ->  ( A  i^i  B )  e.  (SubMnd `  M )
 )
 
Theorem0mhm 12704 The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |- 
 .0.  =  ( 0g `  N )   &    |-  B  =  (
 Base `  M )   =>    |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N )
 )
 
Theoremmhmco 12705 The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U )
 )
 
Theoremmhmima 12706 The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M ) )  ->  ( F
 " X )  e.  (SubMnd `  N )
 )
 
Theoremmhmeql 12707 The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S MndHom  T )  /\  G  e.  ( S MndHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
 )
 
7.2  Groups
 
7.2.1  Definition and basic properties
 
Syntaxcgrp 12708 Extend class notation with class of all groups.
 class  Grp
 
Syntaxcminusg 12709 Extend class notation with inverse of group element.
 class  invg
 
Syntaxcsg 12710 Extend class notation with group subtraction (or division) operation.
 class  -g
 
Definitiondf-grp 12711* Define class of all groups. A group is a monoid (df-mnd 12653) whose internal operation is such that every element admits a left inverse (which can be proven to be a two-sided inverse). Thus, a group  G is an algebraic structure formed from a base set of elements (notated  ( Base `  G
) per df-base 12422) and an internal group operation (notated  ( +g  `  G
) per df-plusg 12493). The operation combines any two elements of the group base set and must satisfy the 4 group axioms: closure (the result of the group operation must always be a member of the base set, see grpcl 12716), associativity (so  ( (
a +g  b ) +g  c )  =  ( a +g  ( b +g  c ) ) for any a, b, c, see grpass 12717), identity (there must be an element  e  =  ( 0g `  G
) such that  e +g  a  =  a +g  e  =  a for any a), and inverse (for each element a in the base set, there must be an element  b  =  invg a in the base set such that  a +g  b  =  b +g  a  =  e). It can be proven that the identity element is unique (grpideu 12719). Groups need not be commutative; a commutative group is an Abelian group. Subgroups can often be formed from groups. An example of an (Abelian) group is the set of complex numbers  CC over the group operation  + (addition). Other structures include groups, including unital rings and fields. (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |- 
 Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
 ) a )  =  ( 0g `  g
 ) }
 
Definitiondf-minusg 12712* Define inverse of group element. (Contributed by NM, 24-Aug-2011.)
 |- 
 invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
 ) ( w (
 +g  `  g ) x )  =  ( 0g `  g ) ) ) )
 
Definitiondf-sbg 12713* Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014.)
 |-  -g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g
 ) ( ( invg `  g ) `
  y ) ) ) )
 
Theoremisgrp 12714* The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
 
Theoremgrpmnd 12715 A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e.  Grp  ->  G  e.  Mnd )
 
Theoremgrpcl 12716 Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremgrpass 12717 A group operation is associative. (Contributed by NM, 14-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremgrpinvex 12718* Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  E. y  e.  B  ( y  .+  X )  =  .0.  )
 
Theoremgrpideu 12719* The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  E! u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
 
Theoremgrpmndd 12720 A group is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremgrpcld 12721 Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
Theoremgrpplusf 12722 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  F  =  ( +f `  G )   =>    |-  ( G  e.  Grp  ->  F : ( B  X.  B ) --> B )
 
Theoremgrpplusfo 12723 The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  F  =  ( +f `  G )   =>    |-  ( G  e.  Grp  ->  F : ( B  X.  B ) -onto-> B )
 
Theoremgrppropd 12724* If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
 
Theoremgrpprop 12725 If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Grp  <->  L  e.  Grp )
 
Theoremisgrpd2e 12726* Deduce a group from its properties. In this version of isgrpd2 12727, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 10-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  =  ( 0g `  G ) )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  (
 ( ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpd2 12727* Deduce a group from its properties. 
N (negative) is normally dependent on  x i.e. read it as  N ( x ). Note: normally we don't use a  ph antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2170, but we make an exception for theorems such as isgrpd2 12727 and ismndd 12673 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  =  ( 0g `  G ) )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  (
 ( ph  /\  x  e.  B )  ->  N  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( N  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpde 12728* Deduce a group from its properties. In this version of isgrpd 12729, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpd 12729* Deduce a group from its properties. Unlike isgrpd2 12727, this one goes straight from the base properties rather than going through  Mnd.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  N  e.  B )   &    |-  ( ( ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremisgrpi 12730* Properties that determine a group. 
N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 3-Sep-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  (
 ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
 ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  .0.  e.  B   &    |-  ( x  e.  B  ->  (  .0.  .+  x )  =  x )   &    |-  ( x  e.  B  ->  N  e.  B )   &    |-  ( x  e.  B  ->  ( N  .+  x )  =  .0.  )   =>    |-  G  e.  Grp
 
Theoremgrpsgrp 12731 A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
 |-  ( G  e.  Grp  ->  G  e. Smgrp )
 
Theoremdfgrp2 12732* Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 12711, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. n  e.  B  A. x  e.  B  ( ( n 
 .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
 
Theoremdfgrp2e 12733* Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  (
 A. x  e.  B  A. y  e.  B  ( ( x  .+  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )  /\  E. n  e.  B  A. x  e.  B  ( ( n 
 .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
 
Theoremgrpidcl 12734 The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  .0.  e.  B )
 
Theoremgrpbn0 12735 The base set of a group is not empty. It is also inhabited (see grpidcl 12734). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  =/=  (/) )
 
Theoremgrplid 12736 The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremgrprid 12737 The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremgrpn0 12738 A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  ( G  e.  Grp  ->  G  =/=  (/) )
 
Theoremhashfingrpnn 12739 A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
Theoremgrprcan 12740 Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Z )  =  ( Y  .+  Z )  <->  X  =  Y ) )
 
Theoremgrpinveu 12741* The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  E! y  e.  B  ( y  .+  X )  =  .0.  )
 
Theoremgrpid 12742 Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremisgrpid2 12743 Properties showing that an element 
Z is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  ( ( Z  e.  B  /\  ( Z  .+  Z )  =  Z ) 
 <->  .0.  =  Z ) )
 
Theoremgrpidd2 12744* Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 12729. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  (  .0.  .+  x )  =  x )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  .0.  =  ( 0g `  G ) )
 
Theoremgrpinvfvalg 12745* The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
 .+  x )  =  .0.  ) ) )
 
Theoremgrpinvval 12746* The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
 
Theoremgrpinvfng 12747 Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  Fn  B )
 
Theoremgrpsubfvalg 12748* Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
 .+  ( I `  y ) ) ) )
 
Theoremgrpsubval 12749 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  =  ( X  .+  ( I `  Y ) ) )
 
Theoremgrpinvf 12750 The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  N : B --> B )
 
Theoremgrpinvcl 12751 A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  X )  e.  B )
 
Theoremgrplinv 12752 The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( ( N `  X )  .+  X )  =  .0.  )
 
Theoremgrprinv 12753 The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .+  ( N `  X ) )  =  .0.  )
 
Theoremgrpinvid1 12754 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <->  ( X  .+  Y )  =  .0.  ) )
 
Theoremgrpinvid2 12755 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <->  ( Y  .+  X )  =  .0.  ) )
 
Theoremisgrpinv 12756* Properties showing that a function 
M is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( ( M : B
 --> B  /\  A. x  e.  B  ( ( M `
  x )  .+  x )  =  .0.  ) 
 <->  N  =  M ) )
 
Theoremgrplrinv 12757* In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( ( y  .+  x )  =  .0.  /\  ( x  .+  y
 )  =  .0.  )
 )
 
Theoremgrpidinv2 12758* A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  B ) 
 ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A )  /\  E. y  e.  B  ( ( y  .+  A )  =  .0.  /\  ( A  .+  y
 )  =  .0.  )
 ) )
 
Theoremgrpidinv 12759* A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp 
 ->  E. u  e.  B  A. x  e.  B  ( ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x )  =  u  /\  ( x  .+  y
 )  =  u ) ) )
 
Theoremgrpinvid 12760 The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
 
Theoremgrplcan 12761 Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  <->  X  =  Y ) )
 
Theoremgrpasscan1 12762 An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
 ( N `  X )  .+  Y ) )  =  Y )
 
Theoremgrpasscan2 12763 An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )
 
Theoremgrpidrcan 12764 If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  X  <->  Z  =  .0.  ) )
 
Theoremgrpidlcan 12765 If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  X  <->  Z  =  .0.  ) )
 
Theoremgrpinvinv 12766 Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  ( N `  X ) )  =  X )
 
Theoremgrpinvcnv 12767 The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  `' N  =  N )
 
Theoremgrpinv11 12768 The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  =  ( N `  Y )  <->  X  =  Y ) )
 
Theoremgrpinvf1o 12769 The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  N : B -1-1-onto-> B )
 
Theoremgrpinvnz 12770 The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `
  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  ->  ( N `  X )  =/=  .0.  )
 
Theoremgrpinvnzcl 12771 The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `
  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  e.  ( B  \  {  .0.  } ) )
 
Theoremgrpsubinv 12772 Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `
  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( N `  Y ) )  =  ( X  .+  Y ) )
 
7.3  The complex numbers as an algebraic extensible structure
 
7.3.1  Definition and basic properties
 
Syntaxcpsmet 12773 Extend class notation with the class of all pseudometric spaces.
 class PsMet
 
Syntaxcxmet 12774 Extend class notation with the class of all extended metric spaces.
 class  *Met
 
Syntaxcmet 12775 Extend class notation with the class of all metrics.
 class  Met
 
Syntaxcbl 12776 Extend class notation with the metric space ball function.
 class  ball
 
Syntaxcfbas 12777 Extend class definition to include the class of filter bases.
 class  fBas
 
Syntaxcfg 12778 Extend class definition to include the filter generating function.
 class  filGen
 
Syntaxcmopn 12779 Extend class notation with a function mapping each metric space to the family of its open sets.
 class  MetOpen
 
Syntaxcmetu 12780 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
 class metUnif
 
Definitiondf-psmet 12781* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  ( (
 y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
 y d z ) 
 <_  ( ( w d y ) +e
 ( w d z ) ) ) }
 )
 
Definitiondf-xmet 12782* Define the set of all extended metrics on a given base set. The definition is similar to df-met 12783, but we also allow the metric to take on the value +oo. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 *Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <->  y  =  z
 )  /\  A. w  e.  x  ( y d z )  <_  (
 ( w d y ) +e ( w d z ) ) ) } )
 
Definitiondf-met 12783* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
 |- 
 Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x ) )  | 
 A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <-> 
 y  =  z ) 
 /\  A. w  e.  x  ( y d z )  <_  ( ( w d y )  +  ( w d z ) ) ) } )
 
Definitiondf-bl 12784* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- 
 ball  =  ( d  e.  _V  |->  ( x  e. 
 dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
 z } ) )
 
Definitiondf-mopn 12785 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
 |-  MetOpen  =  ( d  e. 
 U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
 
Definitiondf-fbas 12786* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |- 
 fBas  =  ( w  e.  _V  |->  { x  e.  ~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
 y  i^i  z )
 )  =/=  (/) ) }
 )
 
Definitiondf-fg 12787* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |-  filGen  =  ( w  e. 
 _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
 
Definitiondf-metu 12788* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- metUnif  =  ( d  e.  U. ran PsMet 
 |->  ( ( dom  dom  d  X.  dom  dom  d )
 filGen ran  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a
 ) ) ) ) )
 
PART 8  BASIC TOPOLOGY
 
8.1  Topology
 
8.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
8.1.1.1  Topologies
 
Syntaxctop 12789 Syntax for the class of topologies.
 class  Top
 
Definitiondf-top 12790* Define the class of topologies. It is a proper class. See istopg 12791 and istopfin 12792 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

 |- 
 Top  =  { x  |  ( A. y  e. 
 ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x ) }
 
Theoremistopg 12791* Express the predicate " J is a topology". See istopfin 12792 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use  T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

 |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J ) ) )
 
Theoremistopfin 12792* Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 12791. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
 |-  ( J  e.  Top  ->  ( A. x ( x 
 C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
 C_  J  /\  x  =/= 
 (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
 
Theoremuniopn 12793 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremiunopn 12794* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  -> 
 U_ x  e.  A  B  e.  J )
 
Theoreminopn 12795 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B )  e.  J )
 
Theoremfiinopn 12796 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
 |-  ( J  e.  Top  ->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
 
Theoremunopn 12797 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B )  e.  J )
 
Theorem0opn 12798 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  J )
 
Theorem0ntop 12799 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
 |- 
 -.  (/)  e.  Top
 
Theoremtopopn 12800 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  J )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >