HomeHome Intuitionistic Logic Explorer
Theorem List (p. 128 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembastg 12701 A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  B  C_  ( topGen `  B ) )
 
Theoremunitg 12702 The topology generated by a basis 
B is a topology on 
U. B. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class  TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
 |-  ( B  e.  V  ->  U. ( topGen `  B )  =  U. B )
 
Theoremtgss 12703 Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
 |-  ( ( C  e.  V  /\  B  C_  C )  ->  ( topGen `  B )  C_  ( topGen `  C ) )
 
Theoremtgcl 12704 Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  TopBases  ->  (
 topGen `  B )  e. 
 Top )
 
Theoremtgclb 12705 The property tgcl 12704 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( B  e.  TopBases  <->  ( topGen `  B )  e.  Top )
 
Theoremtgtopon 12706 A basis generates a topology on 
U. B. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( B  e.  TopBases  ->  (
 topGen `  B )  e.  (TopOn `  U. B ) )
 
Theoremtopbas 12707 A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
 |-  ( J  e.  Top  ->  J  e.  TopBases )
 
Theoremtgtop 12708 A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
 |-  ( J  e.  Top  ->  ( topGen `  J )  =  J )
 
Theoremeltop 12709 Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.)
 |-  ( J  e.  Top  ->  ( A  e.  J  <->  A 
 C_  U. ( J  i^i  ~P A ) ) )
 
Theoremeltop2 12710* Membership in a topology. (Contributed by NM, 19-Jul-2006.)
 |-  ( J  e.  Top  ->  ( A  e.  J  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
 
Theoremeltop3 12711* Membership in a topology. (Contributed by NM, 19-Jul-2006.)
 |-  ( J  e.  Top  ->  ( A  e.  J  <->  E. x ( x  C_  J  /\  A  =  U. x ) ) )
 
Theoremtgdom 12712 A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
 |-  ( B  e.  V  ->  ( topGen `  B )  ~<_  ~P B )
 
Theoremtgiun 12713* The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B ) )
 
Theoremtgidm 12714 The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( B  e.  V  ->  ( topGen `  ( topGen `  B ) )  =  ( topGen `
  B ) )
 
Theorembastop 12715 Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.)
 |-  ( B  e.  TopBases  ->  ( B  e.  Top  <->  ( topGen `  B )  =  B )
 )
 
Theoremtgtop11 12716 The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.)
 |-  ( ( J  e.  Top  /\  K  e.  Top  /\  ( topGen `  J )  =  ( topGen `  K )
 )  ->  J  =  K )
 
Theoremen1top 12717  { (/) } is the only topology with one element. (Contributed by FL, 18-Aug-2008.)
 |-  ( J  e.  Top  ->  ( J  ~~  1o  <->  J  =  { (/)
 } ) )
 
Theoremtgss3 12718 A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B )  C_  ( topGen `  C )  <->  B  C_  ( topGen `  C ) ) )
 
Theoremtgss2 12719* A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( B  e.  V  /\  U. B  =  U. C )  ->  (
 ( topGen `  B )  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
 
Theorembasgen 12720 Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B ) )  ->  ( topGen `  B )  =  J )
 
Theorembasgen2 12721* Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
 y  e.  z  /\  z  C_  x ) ) 
 ->  ( topGen `  B )  =  J )
 
Theorem2basgeng 12722 Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
 |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B ) )  ->  ( topGen `  B )  =  ( topGen `  C )
 )
 
Theorembastop1 12723* A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGen `  B
)  =  J " to express " B is a basis for topology  J " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( J  e.  Top  /\  B  C_  J )  ->  ( ( topGen `  B )  =  J  <->  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y ) ) )
 
Theorembastop2 12724* A version of bastop1 12723 that doesn't have  B  C_  J in the antecedent. (Contributed by NM, 3-Feb-2008.)
 |-  ( J  e.  Top  ->  ( ( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y ) ) ) )
 
8.1.3  Examples of topologies
 
Theoremdistop 12725 The discrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
 |-  ( A  e.  V  ->  ~P A  e.  Top )
 
Theoremtopnex 12726 The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4427. (Contributed by BJ, 2-May-2021.)
 |- 
 Top  e/  _V
 
Theoremdistopon 12727 The discrete topology on a set  A, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( A  e.  V  ->  ~P A  e.  (TopOn `  A ) )
 
Theoremsn0topon 12728 The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |- 
 { (/) }  e.  (TopOn `  (/) )
 
Theoremsn0top 12729 The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.)
 |- 
 { (/) }  e.  Top
 
Theoremepttop 12730* The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e. 
 ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  (TopOn `  A ) )
 
Theoremdistps 12731 The discrete topology on a set  A expressed as a topological space. (Contributed by FL, 20-Aug-2006.)
 |-  A  e.  _V   &    |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
 <. (TopSet `  ndx ) ,  ~P A >. }   =>    |-  K  e.  TopSp
 
8.1.4  Closure and interior
 
Syntaxccld 12732 Extend class notation with the set of closed sets of a topology.
 class  Clsd
 
Syntaxcnt 12733 Extend class notation with interior of a subset of a topology base set.
 class  int
 
Syntaxccl 12734 Extend class notation with closure of a subset of a topology base set.
 class  cls
 
Definitiondf-cld 12735* Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.)
 |- 
 Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
 
Definitiondf-ntr 12736* Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 12750. (Contributed by NM, 10-Sep-2006.)
 |- 
 int  =  ( j  e.  Top  |->  ( x  e. 
 ~P U. j  |->  U. (
 j  i^i  ~P x ) ) )
 
Definitiondf-cls 12737* Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 12751. (Contributed by NM, 3-Oct-2006.)
 |- 
 cls  =  ( j  e.  Top  |->  ( x  e. 
 ~P U. j  |->  |^| { y  e.  ( Clsd `  j )  |  x  C_  y }
 ) )
 
Theoremfncld 12738 The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |- 
 Clsd  Fn  Top
 
Theoremcldval 12739* The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
 
Theoremntrfval 12740* The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
 
Theoremclsfval 12741* The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( cls `  J )  =  ( x  e.  ~P X  |->  |^| { y  e.  ( Clsd `  J )  |  x  C_  y }
 ) )
 
Theoremcldrcl 12742 Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( C  e.  ( Clsd `  J )  ->  J  e.  Top )
 
Theoremiscld 12743 The predicate "the class  S is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X  \  S )  e.  J ) ) )
 
Theoremiscld2 12744 A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( S  e.  ( Clsd `  J )  <->  ( X  \  S )  e.  J ) )
 
Theoremcldss 12745 A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
 |-  X  =  U. J   =>    |-  ( S  e.  ( Clsd `  J )  ->  S  C_  X )
 
Theoremcldss2 12746 The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.)
 |-  X  =  U. J   =>    |-  ( Clsd `  J )  C_  ~P X
 
Theoremcldopn 12747 The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
 |-  X  =  U. J   =>    |-  ( S  e.  ( Clsd `  J )  ->  ( X  \  S )  e.  J )
 
Theoremdifopn 12748 The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
 |-  X  =  U. J   =>    |-  (
 ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  ( A  \  B )  e.  J )
 
Theoremtopcld 12749 The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J )
 )
 
Theoremntrval 12750 The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  = 
 U. ( J  i^i  ~P S ) )
 
Theoremclsval 12751* The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( cls `  J ) `  S )  = 
 |^| { x  e.  ( Clsd `  J )  |  S  C_  x }
 )
 
Theorem0cld 12752 The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  ( Clsd `  J ) )
 
Theoremuncld 12753 The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J ) )  ->  ( A  u.  B )  e.  ( Clsd `  J ) )
 
Theoremcldcls 12754 A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
 |-  ( S  e.  ( Clsd `  J )  ->  ( ( cls `  J ) `  S )  =  S )
 
Theoremiuncld 12755* A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
 )  ->  U_ x  e.  A  B  e.  ( Clsd `  J ) )
 
Theoremunicld 12756 A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  Fin  /\  A  C_  ( Clsd `  J ) )  ->  U. A  e.  ( Clsd `  J )
 )
 
Theoremntropn 12757 The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  e.  J )
 
Theoremclsss 12758 Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  ( ( cls `  J ) `  T )  C_  ( ( cls `  J ) `  S ) )
 
Theoremntrss 12759 Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  ( ( int `  J ) `  T )  C_  ( ( int `  J ) `  S ) )
 
Theoremsscls 12760 A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S ) )
 
Theoremntrss2 12761 A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  C_  S )
 
Theoremssntr 12762 An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S )
 )  ->  O  C_  (
 ( int `  J ) `  S ) )
 
Theoremntrss3 12763 The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  C_  X )
 
Theoremntrin 12764 A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( ( int `  J ) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A )  i^i  ( ( int `  J ) `  B ) ) )
 
Theoremisopn3 12765 A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( S  e.  J  <->  ( ( int `  J ) `  S )  =  S ) )
 
Theoremntridm 12766 The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  ( ( int `  J ) `  S ) )  =  (
 ( int `  J ) `  S ) )
 
Theoremclstop 12767 The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  (
 ( cls `  J ) `  X )  =  X )
 
Theoremntrtop 12768 The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  (
 ( int `  J ) `  X )  =  X )
 
Theoremclsss2 12769 If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  ( ( cls `  J ) `  S )  C_  C )
 
Theoremclsss3 12770 The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( cls `  J ) `  S )  C_  X )
 
Theoremntrcls0 12771 A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  ( ( int `  J ) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( int `  J ) `  S )  =  (/) )
 
Theoremntreq0 12772* Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( ( int `  J ) `  S )  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) ) )
 
Theoremcls0 12773 The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.)
 |-  ( J  e.  Top  ->  ( ( cls `  J ) `  (/) )  =  (/) )
 
Theoremntr0 12774 The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
 |-  ( J  e.  Top  ->  ( ( int `  J ) `  (/) )  =  (/) )
 
Theoremisopn3i 12775 An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  ( ( J  e.  Top  /\  S  e.  J ) 
 ->  ( ( int `  J ) `  S )  =  S )
 
Theoremdiscld 12776 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
 |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )
 
Theoremsn0cld 12777 The closed sets of the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.)
 |-  ( Clsd `  { (/) } )  =  { (/) }
 
8.1.5  Neighborhoods
 
Syntaxcnei 12778 Extend class notation with neighborhood relation for topologies.
 class  nei
 
Definitiondf-nei 12779* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)
 |- 
 nei  =  ( j  e.  Top  |->  ( x  e. 
 ~P U. j  |->  { y  e.  ~P U. j  | 
 E. g  e.  j  ( x  C_  g  /\  g  C_  y ) }
 ) )
 
Theoremneifval 12780* Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v
 ) } ) )
 
Theoremneif 12781 The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
 ~P X )
 
Theoremneiss2 12782 A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
 
Theoremneival 12783* Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( nei `  J ) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v
 ) } )
 
Theoremisnei 12784* The predicate "the class  N is a neighborhood of  S". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( N  e.  (
 ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
 
Theoremneiint 12785 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  (
 ( nei `  J ) `  S )  <->  S  C_  ( ( int `  J ) `  N ) ) )
 
Theoremisneip 12786* The predicate "the class  N is a neighborhood of point  P". (Contributed by NM, 26-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  P  e.  X ) 
 ->  ( N  e.  (
 ( nei `  J ) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
 
Theoremneii1 12787 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  X )
 
Theoremneisspw 12788 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  (
 ( nei `  J ) `  S )  C_  ~P X )
 
Theoremneii2 12789* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
 
Theoremneiss 12790 Any neighborhood of a set  S is also a neighborhood of any subset  R  C_  S. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J ) `  R ) )
 
Theoremssnei 12791 A set is included in any of its neighborhoods. Generalization to subsets of elnei 12792. (Contributed by FL, 16-Nov-2006.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  N )
 
Theoremelnei 12792 A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
 |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) ) 
 ->  P  e.  N )
 
Theorem0nnei 12793 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
 |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/)  e.  ( ( nei `  J ) `  S ) )
 
Theoremneipsm 12794* A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } ) ) )
 
Theoremopnneissb 12795 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  ->  ( S  C_  N  <->  N  e.  (
 ( nei `  J ) `  S ) ) )
 
Theoremopnssneib 12796 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  ->  ( S  C_  N  <->  N  e.  (
 ( nei `  J ) `  S ) ) )
 
Theoremssnei2 12797 Any subset  M of  X containing a neighborhood  N of a set  S is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  /\  ( N  C_  M  /\  M  C_  X ) ) 
 ->  M  e.  ( ( nei `  J ) `  S ) )
 
Theoremopnneiss 12798 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
 |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  N )  ->  N  e.  ( ( nei `  J ) `  S ) )
 
Theoremopnneip 12799 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
 |-  ( ( J  e.  Top  /\  N  e.  J  /\  P  e.  N )  ->  N  e.  ( ( nei `  J ) `  { P } )
 )
 
Theoremtpnei 12800 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 12798. (Contributed by FL, 2-Oct-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  (
 ( nei `  J ) `  S ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >