HomeHome Intuitionistic Logic Explorer
Theorem List (p. 128 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremndxarg 12701 Get the numeric argument from a defined structure component extractor such as df-base 12684. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( E `  ndx )  =  N
 
Theoremndxid 12702 A structure component extractor is defined by its own index. This theorem, together with strslfv 12723 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the  1 in df-base 12684, making it easier to change should the need arise.

(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

 |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  E  = Slot  ( E `
  ndx )
 
Theoremndxslid 12703 A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12723. (Contributed by Jim Kingdon, 29-Jan-2023.)
 |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
 
Theoremslotslfn 12704 A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  E  Fn  _V
 
Theoremslotex 12705 Existence of slot value. A corollary of slotslfn 12704. (Contributed by Jim Kingdon, 12-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  ( A  e.  V  ->  ( E `  A )  e.  _V )
 
Theoremstrndxid 12706 The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.)
 |-  ( ph  ->  S  e.  V )   &    |-  E  = Slot  N   &    |-  N  e.  NN   =>    |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  ( E `  S ) )
 
Theoremreldmsets 12707 The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
 |- 
 Rel  dom sSet
 
Theoremsetsvalg 12708 Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
 ) )
 
Theoremsetsvala 12709 Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.)
 |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W ) 
 ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A } )
 )  u.  { <. A ,  B >. } )
 )
 
Theoremsetsex 12710 Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( S  e.  V  /\  A  e.  X  /\  B  e.  W ) 
 ->  ( S sSet  <. A ,  B >. )  e.  _V )
 
Theoremstrsetsid 12711 Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  E  = Slot  ( E `
  ndx )   &    |-  ( ph  ->  S Struct  <. M ,  N >. )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  ( E ` 
 ndx )  e.  dom  S )   =>    |-  ( ph  ->  S  =  ( S sSet  <. ( E `
  ndx ) ,  ( E `  S ) >. ) )
 
Theoremfvsetsid 12712 The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
 |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U ) 
 ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )
 
Theoremsetsfun 12713 A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.)
 |-  ( ( ( G  e.  V  /\  Fun  G )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( G sSet  <. I ,  E >. ) )
 
Theoremsetsfun0 12714 A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12713 is useful for proofs based on isstruct2r 12689 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
 |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } )
 )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/)
 } ) )
 
Theoremsetsn0fun 12715 The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
 |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  I  e.  U )   &    |-  ( ph  ->  E  e.  W )   =>    |-  ( ph  ->  Fun  (
 ( S sSet  <. I ,  E >. )  \  { (/)
 } ) )
 
Theoremsetsresg 12716 The structure replacement function does not affect the value of  S away from  A. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X ) 
 ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } )
 )  =  ( S  |`  ( _V  \  { A } ) ) )
 
Theoremsetsabsd 12717 Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
 |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  A  e.  W )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  (
 ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
 
Theoremsetscom 12718 Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( ( S  e.  V  /\  A  =/=  B )  /\  ( C  e.  W  /\  D  e.  X )
 )  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
 
Theoremsetscomd 12719 Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( ph  ->  A  e.  Y )   &    |-  ( ph  ->  B  e.  Z )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  D  e.  X )   =>    |-  ( ph  ->  (
 ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
 
Theoremstrslfvd 12720 Deduction version of strslfv 12723. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  <. ( E `  ndx ) ,  C >.  e.  S )   =>    |-  ( ph  ->  C  =  ( E `  S ) )
 
Theoremstrslfv2d 12721 Deduction version of strslfv 12723. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  `' `' S )   &    |-  ( ph  ->  <.
 ( E `  ndx ) ,  C >.  e.  S )   &    |-  ( ph  ->  C  e.  W )   =>    |-  ( ph  ->  C  =  ( E `  S ) )
 
Theoremstrslfv2 12722 A variation on strslfv 12723 to avoid asserting that  S itself is a function, which involves sethood of all the ordered pair components of  S. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  S  e.  _V   &    |-  Fun  `' `' S   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  <. ( E `
  ndx ) ,  C >.  e.  S   =>    |-  ( C  e.  V  ->  C  =  ( E `
  S ) )
 
Theoremstrslfv 12723 Extract a structure component  C (such as the base set) from a structure  S with a component extractor  E (such as the base set extractor df-base 12684). By virtue of ndxslid 12703, this can be done without having to refer to the hard-coded numeric index of  E. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  S Struct  X   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  { <. ( E `  ndx ) ,  C >. }  C_  S   =>    |-  ( C  e.  V  ->  C  =  ( E `  S ) )
 
Theoremstrslfv3 12724 Variant on strslfv 12723 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( ph  ->  U  =  S )   &    |-  S Struct  X   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  { <. ( E `  ndx ) ,  C >. }  C_  S   &    |-  ( ph  ->  C  e.  V )   &    |-  A  =  ( E `
  U )   =>    |-  ( ph  ->  A  =  C )
 
Theoremstrslssd 12725 Deduction version of strslss 12726. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  T  e.  V )   &    |-  ( ph  ->  Fun  T )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ph  ->  <. ( E `
  ndx ) ,  C >.  e.  S )   =>    |-  ( ph  ->  ( E `  T )  =  ( E `  S ) )
 
Theoremstrslss 12726 Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
 |-  T  e.  _V   &    |-  Fun  T   &    |-  S  C_  T   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  <. ( E `
  ndx ) ,  C >.  e.  S   =>    |-  ( E `  T )  =  ( E `  S )
 
Theoremstrsl0 12727 All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  (/)  =  ( E `  (/) )
 
Theorembase0 12728 The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  (/)  =  ( Base `  (/) )
 
Theoremsetsslid 12729 Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   =>    |-  ( ( W  e.  A  /\  C  e.  V )  ->  C  =  ( E `  ( W sSet  <. ( E `  ndx ) ,  C >. ) ) )
 
Theoremsetsslnid 12730 Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( E `  ndx )  =/=  D   &    |-  D  e.  NN   =>    |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W )  =  ( E `  ( W sSet  <. D ,  C >. ) ) )
 
Theorembaseval 12731 Value of the base set extractor. (Normally it is preferred to work with  ( Base `  ndx ) rather than the hard-coded  1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
 |-  K  e.  _V   =>    |-  ( Base `  K )  =  ( K `  1 )
 
Theorembaseid 12732 Utility theorem: index-independent form of df-base 12684. (Contributed by NM, 20-Oct-2012.)
 |- 
 Base  = Slot  ( Base `  ndx )
 
Theorembasendx 12733 Index value of the base set extractor.

Use of this theorem is discouraged since the particular value  1 for the index is an implementation detail. It is generally sufficient to work with  ( Base `  ndx ) and use theorems such as baseid 12732 and basendxnn 12734.

The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 12841. Although we have a few theorems such as basendxnplusgndx 12802, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices).

(New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)

 |-  ( Base `  ndx )  =  1
 
Theorembasendxnn 12734 The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
 |-  ( Base `  ndx )  e. 
 NN
 
Theorembaseslid 12735 The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.)
 |-  ( Base  = Slot  ( Base ` 
 ndx )  /\  ( Base `  ndx )  e. 
 NN )
 
Theorembasfn 12736 The base set extractor is a function on  _V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
 |- 
 Base  Fn  _V
 
Theorembasmex 12737 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.)
 |-  B  =  ( Base `  G )   =>    |-  ( A  e.  B  ->  G  e.  _V )
 
Theorembasmexd 12738 A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  G  e.  _V )
 
Theorembasm 12739* A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( A  e.  B  ->  E. j  j  e.  G )
 
Theoremrelelbasov 12740 Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
 |- 
 Rel  dom  O   &    |-  Rel  O   &    |-  S  =  ( X O Y )   &    |-  B  =  ( Base `  S )   =>    |-  ( A  e.  B  ->  ( X  e.  _V  /\  Y  e.  _V )
 )
 
Theoremreldmress 12741 The structure restriction is a proper operator, so it can be used with ovprc1 5958. (Contributed by Stefan O'Rear, 29-Nov-2014.)
 |- 
 Rel  doms
 
Theoremressvalsets 12742 Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
 |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base ` 
 ndx ) ,  ( A  i^i  ( Base `  W ) ) >. ) )
 
Theoremressex 12743 Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
 |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  e.  _V )
 
Theoremressval2 12744 Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
 |-  R  =  ( Ws  A )   &    |-  B  =  (
 Base `  W )   =>    |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y )  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. ) )
 
Theoremressbasd 12745 Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
 |-  ( ph  ->  R  =  ( Ws  A ) )   &    |-  ( ph  ->  B  =  (
 Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( A  i^i  B )  =  ( Base `  R ) )
 
Theoremressbas2d 12746 Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  ( ph  ->  R  =  ( Ws  A ) )   &    |-  ( ph  ->  B  =  (
 Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A 
 C_  B )   =>    |-  ( ph  ->  A  =  ( Base `  R ) )
 
Theoremressbasssd 12747 The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  ( ph  ->  R  =  ( Ws  A ) )   &    |-  ( ph  ->  B  =  (
 Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  (
 Base `  R )  C_  B )
 
Theoremressbasid 12748 The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  V  ->  ( Base `  ( Ws  B ) )  =  B )
 
Theoremstrressid 12749 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
 |-  ( ph  ->  B  =  ( Base `  W )
 )   &    |-  ( ph  ->  W Struct  <. M ,  N >. )   &    |-  ( ph  ->  Fun  W )   &    |-  ( ph  ->  ( Base ` 
 ndx )  e.  dom  W )   =>    |-  ( ph  ->  ( Ws  B )  =  W )
 
Theoremressval3d 12750 Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
 |-  R  =  ( Ss  A )   &    |-  B  =  (
 Base `  S )   &    |-  E  =  ( Base `  ndx )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  Fun  S )   &    |-  ( ph  ->  E  e.  dom  S )   &    |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  R  =  ( S sSet  <. E ,  A >. ) )
 
Theoremresseqnbasd 12751 The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
 |-  R  =  ( Ws  A )   &    |-  C  =  ( E `  W )   &    |-  ( E  = Slot  ( E `
  ndx )  /\  ( E `  ndx )  e. 
 NN )   &    |-  ( E `  ndx )  =/=  ( Base `  ndx )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  C  =  ( E `  R ) )
 
Theoremressinbasd 12752 Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
 |-  ( ph  ->  B  =  ( Base `  W )
 )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  W  e.  V )   =>    |-  ( ph  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B ) ) )
 
Theoremressressg 12753 Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
 |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z ) 
 ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
 
Theoremressabsg 12754 Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ( A  e.  X  /\  B  C_  A  /\  W  e.  Y ) 
 ->  ( ( Ws  A )s  B )  =  ( Ws  B ) )
 
6.1.2  Slot definitions
 
Syntaxcplusg 12755 Extend class notation with group (addition) operation.
 class  +g
 
Syntaxcmulr 12756 Extend class notation with ring multiplication.
 class  .r
 
Syntaxcstv 12757 Extend class notation with involution.
 class  *r
 
Syntaxcsca 12758 Extend class notation with scalar field.
 class Scalar
 
Syntaxcvsca 12759 Extend class notation with scalar product.
 class  .s
 
Syntaxcip 12760 Extend class notation with Hermitian form (inner product).
 class  .i
 
Syntaxcts 12761 Extend class notation with the topology component of a topological space.
 class TopSet
 
Syntaxcple 12762 Extend class notation with "less than or equal to" for posets.
 class  le
 
Syntaxcoc 12763 Extend class notation with the class of orthocomplementation extractors.
 class  oc
 
Syntaxcds 12764 Extend class notation with the metric space distance function.
 class  dist
 
Syntaxcunif 12765 Extend class notation with the uniform structure.
 class  UnifSet
 
Syntaxchom 12766 Extend class notation with the hom-set structure.
 class  Hom
 
Syntaxcco 12767 Extend class notation with the composition operation.
 class comp
 
Definitiondf-plusg 12768 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 +g  = Slot  2
 
Definitiondf-mulr 12769 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .r  = Slot  3
 
Definitiondf-starv 12770 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  *r  = Slot  4
 
Definitiondf-sca 12771 Define scalar field component of a vector space  v. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- Scalar  = Slot  5
 
Definitiondf-vsca 12772 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .s  = Slot  6
 
Definitiondf-ip 12773 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 .i  = Slot  8
 
Definitiondf-tset 12774 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- TopSet  = Slot  9
 
Definitiondf-ple 12775 Define "less than or equal to" ordering extractor for posets and related structures. We use ; 1 0 for the index to avoid conflict with  1 through  9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
 |- 
 le  = Slot ; 1 0
 
Definitiondf-ocomp 12776 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 oc  = Slot ; 1 1
 
Definitiondf-ds 12777 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |- 
 dist  = Slot ; 1 2
 
Definitiondf-unif 12778 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |- 
 UnifSet  = Slot ; 1 3
 
Definitiondf-hom 12779 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- 
 Hom  = Slot ; 1 4
 
Definitiondf-cco 12780 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- comp  = Slot ; 1
 5
 
Theoremstrleund 12781 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  G Struct  <. C ,  D >. )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  ( F  u.  G ) Struct  <. A ,  D >. )
 
Theoremstrleun 12782 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  F Struct  <. A ,  B >.   &    |-  G Struct 
 <. C ,  D >.   &    |-  B  <  C   =>    |-  ( F  u.  G ) Struct 
 <. A ,  D >.
 
Theoremstrext 12783 Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
 |-  ( ph  ->  F Struct  <. A ,  B >. )   &    |-  ( ph  ->  C  e.  ( ZZ>= `  B )
 )   =>    |-  ( ph  ->  F Struct  <. A ,  C >. )
 
Theoremstrle1g 12784 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   =>    |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
 
Theoremstrle2g 12785 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   =>    |-  (
 ( X  e.  V  /\  Y  e.  W ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >. )
 
Theoremstrle3g 12786 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  I  e.  NN   &    |-  A  =  I   &    |-  I  <  J   &    |-  J  e.  NN   &    |-  B  =  J   &    |-  J  <  K   &    |-  K  e.  NN   &    |-  C  =  K   =>    |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  P ) 
 ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } Struct  <. I ,  K >. )
 
Theoremplusgndx 12787 Index value of the df-plusg 12768 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( +g  `  ndx )  =  2
 
Theoremplusgid 12788 Utility theorem: index-independent form of df-plusg 12768. (Contributed by NM, 20-Oct-2012.)
 |- 
 +g  = Slot  ( +g  ` 
 ndx )
 
Theoremplusgndxnn 12789 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
 |-  ( +g  `  ndx )  e.  NN
 
Theoremplusgslid 12790 Slot property of  +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
 |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e. 
 NN )
 
Theorembasendxltplusgndx 12791 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( +g  `  ndx )
 
Theoremopelstrsl 12792 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
 |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( E `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( E `  S ) )
 
Theoremopelstrbas 12793 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
 |-  ( ph  ->  S Struct  X )   &    |-  ( ph  ->  V  e.  Y )   &    |-  ( ph  ->  <. ( Base `  ndx ) ,  V >.  e.  S )   =>    |-  ( ph  ->  V  =  ( Base `  S )
 )
 
Theorem1strstrg 12794 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  G Struct  <. 1 ,  1
 >. )
 
Theorem1strbas 12795 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. }   =>    |-  ( B  e.  V  ->  B  =  ( Base `  G ) )
 
Theorem2strstrg 12796 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. 1 ,  N >. )
 
Theorem2strbasg 12797 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
 
Theorem2stropg 12798 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( E `
  ndx ) ,  .+  >. }   &    |-  E  = Slot  N   &    |-  1  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  .+  =  ( E `
  G ) )
 
Theorem2strstr1g 12799 A constructed two-slot structure. Version of 2strstrg 12796 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  G Struct  <. ( Base `  ndx ) ,  N >. )
 
Theorem2strbas1g 12800 The base set of a constructed two-slot structure. Version of 2strbasg 12797 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
 |-  G  =  { <. (
 Base `  ndx ) ,  B >. ,  <. N ,  .+  >. }   &    |-  ( Base `  ndx )  <  N   &    |-  N  e.  NN   =>    |-  (
 ( B  e.  V  /\  .+  e.  W ) 
 ->  B  =  ( Base `  G ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >