ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mulg Unicode version

Definition df-mulg 12840
Description: Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
Assertion
Ref Expression
df-mulg  |- .g  =  (
g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g
) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
Distinct variable group:    g, n, s, x

Detailed syntax breakdown of Definition df-mulg
StepHypRef Expression
1 cmg 12839 . 2  class .g
2 vg . . 3  setvar  g
3 cvv 2733 . . 3  class  _V
4 vn . . . 4  setvar  n
5 vx . . . 4  setvar  x
6 cz 9221 . . . 4  class  ZZ
72cv 1350 . . . . 5  class  g
8 cbs 12425 . . . . 5  class  Base
97, 8cfv 5205 . . . 4  class  ( Base `  g )
104cv 1350 . . . . . 6  class  n
11 cc0 7783 . . . . . 6  class  0
1210, 11wceq 1351 . . . . 5  wff  n  =  0
13 c0g 12623 . . . . . 6  class  0g
147, 13cfv 5205 . . . . 5  class  ( 0g
`  g )
15 vs . . . . . 6  setvar  s
16 cplusg 12489 . . . . . . . 8  class  +g
177, 16cfv 5205 . . . . . . 7  class  ( +g  `  g )
18 cn 8887 . . . . . . . 8  class  NN
195cv 1350 . . . . . . . . 9  class  x
2019csn 3586 . . . . . . . 8  class  { x }
2118, 20cxp 4615 . . . . . . 7  class  ( NN 
X.  { x }
)
22 c1 7784 . . . . . . 7  class  1
2317, 21, 22cseq 10410 . . . . . 6  class  seq 1
( ( +g  `  g
) ,  ( NN 
X.  { x }
) )
24 clt 7963 . . . . . . . 8  class  <
2511, 10, 24wbr 3995 . . . . . . 7  wff  0  <  n
2615cv 1350 . . . . . . . 8  class  s
2710, 26cfv 5205 . . . . . . 7  class  ( s `
 n )
2810cneg 8100 . . . . . . . . 9  class  -u n
2928, 26cfv 5205 . . . . . . . 8  class  ( s `
 -u n )
30 cminusg 12736 . . . . . . . . 9  class  invg
317, 30cfv 5205 . . . . . . . 8  class  ( invg `  g )
3229, 31cfv 5205 . . . . . . 7  class  ( ( invg `  g
) `  ( s `  -u n ) )
3325, 27, 32cif 3529 . . . . . 6  class  if ( 0  <  n ,  ( s `  n
) ,  ( ( invg `  g
) `  ( s `  -u n ) ) )
3415, 23, 33csb 3052 . . . . 5  class  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) )
3512, 14, 34cif 3529 . . . 4  class  if ( n  =  0 ,  ( 0g `  g
) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) )
364, 5, 6, 9, 35cmpo 5864 . . 3  class  ( n  e.  ZZ ,  x  e.  ( Base `  g
)  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1
( ( +g  `  g
) ,  ( NN 
X.  { x }
) )  /  s ]_ if ( 0  < 
n ,  ( s `
 n ) ,  ( ( invg `  g ) `  (
s `  -u n ) ) ) ) )
372, 3, 36cmpt 4056 . 2  class  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g
)  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1
( ( +g  `  g
) ,  ( NN 
X.  { x }
) )  /  s ]_ if ( 0  < 
n ,  ( s `
 n ) ,  ( ( invg `  g ) `  (
s `  -u n ) ) ) ) ) )
381, 37wceq 1351 1  wff .g  =  (
g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g
) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  mulgfvalg  12841
  Copyright terms: Public domain W3C validator