ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfvalg Unicode version

Theorem mulgfvalg 13060
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfvalg  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Distinct variable groups:    x,  .0. , n    x, B, n    x,  .+ , n    x, G, n    x, I, n
Allowed substitution hints:    .x. ( x, n)    V( x, n)

Proof of Theorem mulgfvalg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2  |-  .x.  =  (.g
`  G )
2 df-mulg 13059 . . 3  |- .g  =  (
w  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) ) )
3 eqidd 2190 . . . 4  |-  ( w  =  G  ->  ZZ  =  ZZ )
4 fveq2 5534 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 mulgval.b . . . . 5  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2240 . . . 4  |-  ( w  =  G  ->  ( Base `  w )  =  B )
7 fveq2 5534 . . . . . 6  |-  ( w  =  G  ->  ( 0g `  w )  =  ( 0g `  G
) )
8 mulgval.o . . . . . 6  |-  .0.  =  ( 0g `  G )
97, 8eqtr4di 2240 . . . . 5  |-  ( w  =  G  ->  ( 0g `  w )  =  .0.  )
10 seqex 10477 . . . . . . 7  |-  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  e.  _V
1110a1i 9 . . . . . 6  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  e. 
_V )
12 id 19 . . . . . . . . 9  |-  ( s  =  seq 1 ( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  ->  s  =  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) ) )
13 fveq2 5534 . . . . . . . . . . 11  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
14 mulgval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2240 . . . . . . . . . 10  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
1615seqeq2d 10482 . . . . . . . . 9  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  =  seq 1 (  .+  ,  ( NN  X.  { x } ) ) )
1712, 16sylan9eqr 2244 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
s  =  seq 1
(  .+  ,  ( NN  X.  { x }
) ) )
1817fveq1d 5536 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) )
19 simpl 109 . . . . . . . . . 10  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  w  =  G )
2019fveq2d 5538 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  ( invg `  G
) )
21 mulgval.i . . . . . . . . 9  |-  I  =  ( invg `  G )
2220, 21eqtr4di 2240 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  I )
2317fveq1d 5536 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  -u n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )
2422, 23fveq12d 5541 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( ( invg `  w ) `  (
s `  -u n ) )  =  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) )
2518, 24ifeq12d 3568 . . . . . 6  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `  (
s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )
2611, 25csbied 3118 . . . . 5  |-  ( w  =  G  ->  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  n ) ,  ( I `  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  -u n
) ) ) )
279, 26ifeq12d 3568 . . . 4  |-  ( w  =  G  ->  if ( n  =  0 ,  ( 0g `  w ) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) )  =  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
283, 6, 27mpoeq123dv 5957 . . 3  |-  ( w  =  G  ->  (
n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
29 elex 2763 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
30 zex 9291 . . . 4  |-  ZZ  e.  _V
31 basfn 12569 . . . . . 6  |-  Base  Fn  _V
32 funfvex 5551 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3332funfni 5335 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3431, 29, 33sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
355, 34eqeltrid 2276 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
36 mpoexga 6236 . . . 4  |-  ( ( ZZ  e.  _V  /\  B  e.  _V )  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
3730, 35, 36sylancr 414 . . 3  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
382, 28, 29, 37fvmptd3 5629 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
391, 38eqtrid 2234 1  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752   [_csb 3072   ifcif 3549   {csn 3607   class class class wbr 4018    X. cxp 4642    Fn wfn 5230   ` cfv 5235    e. cmpo 5897   0cc0 7840   1c1 7841    < clt 8021   -ucneg 8158   NNcn 8948   ZZcz 9282    seqcseq 10475   Basecbs 12511   +g cplusg 12586   0gc0g 12758   invgcminusg 12943  .gcmg 13058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-neg 8160  df-inn 8949  df-z 9283  df-seqfrec 10476  df-ndx 12514  df-slot 12515  df-base 12517  df-mulg 13059
This theorem is referenced by:  mulgval  13061  mulgex  13062  mulgfng  13063  mulgpropdg  13101
  Copyright terms: Public domain W3C validator