| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulgfvalg | Unicode version | ||
| Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| mulgval.b | 
 | 
| mulgval.p | 
 | 
| mulgval.o | 
 | 
| mulgval.i | 
 | 
| mulgval.t | 
 | 
| Ref | Expression | 
|---|---|
| mulgfvalg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulgval.t | 
. 2
 | |
| 2 | df-mulg 13250 | 
. . 3
 | |
| 3 | eqidd 2197 | 
. . . 4
 | |
| 4 | fveq2 5558 | 
. . . . 5
 | |
| 5 | mulgval.b | 
. . . . 5
 | |
| 6 | 4, 5 | eqtr4di 2247 | 
. . . 4
 | 
| 7 | fveq2 5558 | 
. . . . . 6
 | |
| 8 | mulgval.o | 
. . . . . 6
 | |
| 9 | 7, 8 | eqtr4di 2247 | 
. . . . 5
 | 
| 10 | seqex 10541 | 
. . . . . . 7
 | |
| 11 | 10 | a1i 9 | 
. . . . . 6
 | 
| 12 | id 19 | 
. . . . . . . . 9
 | |
| 13 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 14 | mulgval.p | 
. . . . . . . . . . 11
 | |
| 15 | 13, 14 | eqtr4di 2247 | 
. . . . . . . . . 10
 | 
| 16 | 15 | seqeq2d 10546 | 
. . . . . . . . 9
 | 
| 17 | 12, 16 | sylan9eqr 2251 | 
. . . . . . . 8
 | 
| 18 | 17 | fveq1d 5560 | 
. . . . . . 7
 | 
| 19 | simpl 109 | 
. . . . . . . . . 10
 | |
| 20 | 19 | fveq2d 5562 | 
. . . . . . . . 9
 | 
| 21 | mulgval.i | 
. . . . . . . . 9
 | |
| 22 | 20, 21 | eqtr4di 2247 | 
. . . . . . . 8
 | 
| 23 | 17 | fveq1d 5560 | 
. . . . . . . 8
 | 
| 24 | 22, 23 | fveq12d 5565 | 
. . . . . . 7
 | 
| 25 | 18, 24 | ifeq12d 3580 | 
. . . . . 6
 | 
| 26 | 11, 25 | csbied 3131 | 
. . . . 5
 | 
| 27 | 9, 26 | ifeq12d 3580 | 
. . . 4
 | 
| 28 | 3, 6, 27 | mpoeq123dv 5984 | 
. . 3
 | 
| 29 | elex 2774 | 
. . 3
 | |
| 30 | zex 9335 | 
. . . 4
 | |
| 31 | basfn 12736 | 
. . . . . 6
 | |
| 32 | funfvex 5575 | 
. . . . . . 7
 | |
| 33 | 32 | funfni 5358 | 
. . . . . 6
 | 
| 34 | 31, 29, 33 | sylancr 414 | 
. . . . 5
 | 
| 35 | 5, 34 | eqeltrid 2283 | 
. . . 4
 | 
| 36 | mpoexga 6270 | 
. . . 4
 | |
| 37 | 30, 35, 36 | sylancr 414 | 
. . 3
 | 
| 38 | 2, 28, 29, 37 | fvmptd3 5655 | 
. 2
 | 
| 39 | 1, 38 | eqtrid 2241 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-neg 8200 df-inn 8991 df-z 9327 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-mulg 13250 | 
| This theorem is referenced by: mulgval 13252 mulgex 13253 mulgfng 13254 mulgpropdg 13294 | 
| Copyright terms: Public domain | W3C validator |