Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgfvalg | Unicode version |
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgval.b | |
mulgval.p | |
mulgval.o | |
mulgval.i | |
mulgval.t | .g |
Ref | Expression |
---|---|
mulgfvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgval.t | . 2 .g | |
2 | df-mulg 12840 | . . 3 .g | |
3 | eqidd 2174 | . . . 4 | |
4 | fveq2 5504 | . . . . 5 | |
5 | mulgval.b | . . . . 5 | |
6 | 4, 5 | eqtr4di 2224 | . . . 4 |
7 | fveq2 5504 | . . . . . 6 | |
8 | mulgval.o | . . . . . 6 | |
9 | 7, 8 | eqtr4di 2224 | . . . . 5 |
10 | seqex 10412 | . . . . . . 7 | |
11 | 10 | a1i 9 | . . . . . 6 |
12 | id 19 | . . . . . . . . 9 | |
13 | fveq2 5504 | . . . . . . . . . . 11 | |
14 | mulgval.p | . . . . . . . . . . 11 | |
15 | 13, 14 | eqtr4di 2224 | . . . . . . . . . 10 |
16 | 15 | seqeq2d 10417 | . . . . . . . . 9 |
17 | 12, 16 | sylan9eqr 2228 | . . . . . . . 8 |
18 | 17 | fveq1d 5506 | . . . . . . 7 |
19 | simpl 109 | . . . . . . . . . 10 | |
20 | 19 | fveq2d 5508 | . . . . . . . . 9 |
21 | mulgval.i | . . . . . . . . 9 | |
22 | 20, 21 | eqtr4di 2224 | . . . . . . . 8 |
23 | 17 | fveq1d 5506 | . . . . . . . 8 |
24 | 22, 23 | fveq12d 5511 | . . . . . . 7 |
25 | 18, 24 | ifeq12d 3548 | . . . . . 6 |
26 | 11, 25 | csbied 3098 | . . . . 5 |
27 | 9, 26 | ifeq12d 3548 | . . . 4 |
28 | 3, 6, 27 | mpoeq123dv 5924 | . . 3 |
29 | elex 2744 | . . 3 | |
30 | zex 9230 | . . . 4 | |
31 | basfn 12482 | . . . . . 6 | |
32 | funfvex 5521 | . . . . . . 7 | |
33 | 32 | funfni 5305 | . . . . . 6 |
34 | 31, 29, 33 | sylancr 414 | . . . . 5 |
35 | 5, 34 | eqeltrid 2260 | . . . 4 |
36 | mpoexga 6200 | . . . 4 | |
37 | 30, 35, 36 | sylancr 414 | . . 3 |
38 | 2, 28, 29, 37 | fvmptd3 5598 | . 2 .g |
39 | 1, 38 | eqtrid 2218 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1351 wcel 2144 cvv 2733 csb 3052 cif 3529 csn 3586 class class class wbr 3995 cxp 4615 wfn 5200 cfv 5205 cmpo 5864 cc0 7783 c1 7784 clt 7963 cneg 8100 cn 8887 cz 9221 cseq 10410 cbs 12425 cplusg 12489 c0g 12623 cminusg 12736 .gcmg 12839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-iinf 4578 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3or 977 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ral 2456 df-rex 2457 df-reu 2458 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-un 3128 df-in 3130 df-ss 3137 df-if 3530 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-tr 4094 df-id 4284 df-iord 4357 df-on 4359 df-iom 4581 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-recs 6293 df-frec 6379 df-neg 8102 df-inn 8888 df-z 9222 df-seqfrec 10411 df-ndx 12428 df-slot 12429 df-base 12431 df-mulg 12840 |
This theorem is referenced by: mulgval 12842 mulgfng 12843 |
Copyright terms: Public domain | W3C validator |