ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfvalg Unicode version

Theorem mulgfvalg 13572
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfvalg  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Distinct variable groups:    x,  .0. , n    x, B, n    x,  .+ , n    x, G, n    x, I, n
Allowed substitution hints:    .x. ( x, n)    V( x, n)

Proof of Theorem mulgfvalg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2  |-  .x.  =  (.g
`  G )
2 df-mulg 13571 . . 3  |- .g  =  (
w  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) ) )
3 eqidd 2208 . . . 4  |-  ( w  =  G  ->  ZZ  =  ZZ )
4 fveq2 5599 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 mulgval.b . . . . 5  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2258 . . . 4  |-  ( w  =  G  ->  ( Base `  w )  =  B )
7 fveq2 5599 . . . . . 6  |-  ( w  =  G  ->  ( 0g `  w )  =  ( 0g `  G
) )
8 mulgval.o . . . . . 6  |-  .0.  =  ( 0g `  G )
97, 8eqtr4di 2258 . . . . 5  |-  ( w  =  G  ->  ( 0g `  w )  =  .0.  )
10 seqex 10631 . . . . . . 7  |-  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  e.  _V
1110a1i 9 . . . . . 6  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  e. 
_V )
12 id 19 . . . . . . . . 9  |-  ( s  =  seq 1 ( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  ->  s  =  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) ) )
13 fveq2 5599 . . . . . . . . . . 11  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
14 mulgval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2258 . . . . . . . . . 10  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
1615seqeq2d 10636 . . . . . . . . 9  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  =  seq 1 (  .+  ,  ( NN  X.  { x } ) ) )
1712, 16sylan9eqr 2262 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
s  =  seq 1
(  .+  ,  ( NN  X.  { x }
) ) )
1817fveq1d 5601 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) )
19 simpl 109 . . . . . . . . . 10  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  w  =  G )
2019fveq2d 5603 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  ( invg `  G
) )
21 mulgval.i . . . . . . . . 9  |-  I  =  ( invg `  G )
2220, 21eqtr4di 2258 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  I )
2317fveq1d 5601 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  -u n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )
2422, 23fveq12d 5606 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( ( invg `  w ) `  (
s `  -u n ) )  =  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) )
2518, 24ifeq12d 3599 . . . . . 6  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `  (
s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )
2611, 25csbied 3148 . . . . 5  |-  ( w  =  G  ->  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  n ) ,  ( I `  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  -u n
) ) ) )
279, 26ifeq12d 3599 . . . 4  |-  ( w  =  G  ->  if ( n  =  0 ,  ( 0g `  w ) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) )  =  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
283, 6, 27mpoeq123dv 6030 . . 3  |-  ( w  =  G  ->  (
n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
29 elex 2788 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
30 zex 9416 . . . 4  |-  ZZ  e.  _V
31 basfn 13005 . . . . . 6  |-  Base  Fn  _V
32 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3332funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3431, 29, 33sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
355, 34eqeltrid 2294 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
36 mpoexga 6321 . . . 4  |-  ( ( ZZ  e.  _V  /\  B  e.  _V )  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
3730, 35, 36sylancr 414 . . 3  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
382, 28, 29, 37fvmptd3 5696 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
391, 38eqtrid 2252 1  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   [_csb 3101   ifcif 3579   {csn 3643   class class class wbr 4059    X. cxp 4691    Fn wfn 5285   ` cfv 5290    e. cmpo 5969   0cc0 7960   1c1 7961    < clt 8142   -ucneg 8279   NNcn 9071   ZZcz 9407    seqcseq 10629   Basecbs 12947   +g cplusg 13024   0gc0g 13203   invgcminusg 13448  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-neg 8281  df-inn 9072  df-z 9408  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-mulg 13571
This theorem is referenced by:  mulgval  13573  mulgex  13574  mulgfng  13575  mulgpropdg  13615
  Copyright terms: Public domain W3C validator