| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgfvalg | Unicode version | ||
| Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| Ref | Expression |
|---|---|
| mulgfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.t |
. 2
| |
| 2 | df-mulg 13571 |
. . 3
| |
| 3 | eqidd 2208 |
. . . 4
| |
| 4 | fveq2 5599 |
. . . . 5
| |
| 5 | mulgval.b |
. . . . 5
| |
| 6 | 4, 5 | eqtr4di 2258 |
. . . 4
|
| 7 | fveq2 5599 |
. . . . . 6
| |
| 8 | mulgval.o |
. . . . . 6
| |
| 9 | 7, 8 | eqtr4di 2258 |
. . . . 5
|
| 10 | seqex 10631 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | id 19 |
. . . . . . . . 9
| |
| 13 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 14 | mulgval.p |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | eqtr4di 2258 |
. . . . . . . . . 10
|
| 16 | 15 | seqeq2d 10636 |
. . . . . . . . 9
|
| 17 | 12, 16 | sylan9eqr 2262 |
. . . . . . . 8
|
| 18 | 17 | fveq1d 5601 |
. . . . . . 7
|
| 19 | simpl 109 |
. . . . . . . . . 10
| |
| 20 | 19 | fveq2d 5603 |
. . . . . . . . 9
|
| 21 | mulgval.i |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr4di 2258 |
. . . . . . . 8
|
| 23 | 17 | fveq1d 5601 |
. . . . . . . 8
|
| 24 | 22, 23 | fveq12d 5606 |
. . . . . . 7
|
| 25 | 18, 24 | ifeq12d 3599 |
. . . . . 6
|
| 26 | 11, 25 | csbied 3148 |
. . . . 5
|
| 27 | 9, 26 | ifeq12d 3599 |
. . . 4
|
| 28 | 3, 6, 27 | mpoeq123dv 6030 |
. . 3
|
| 29 | elex 2788 |
. . 3
| |
| 30 | zex 9416 |
. . . 4
| |
| 31 | basfn 13005 |
. . . . . 6
| |
| 32 | funfvex 5616 |
. . . . . . 7
| |
| 33 | 32 | funfni 5395 |
. . . . . 6
|
| 34 | 31, 29, 33 | sylancr 414 |
. . . . 5
|
| 35 | 5, 34 | eqeltrid 2294 |
. . . 4
|
| 36 | mpoexga 6321 |
. . . 4
| |
| 37 | 30, 35, 36 | sylancr 414 |
. . 3
|
| 38 | 2, 28, 29, 37 | fvmptd3 5696 |
. 2
|
| 39 | 1, 38 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-neg 8281 df-inn 9072 df-z 9408 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-mulg 13571 |
| This theorem is referenced by: mulgval 13573 mulgex 13574 mulgfng 13575 mulgpropdg 13615 |
| Copyright terms: Public domain | W3C validator |