| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgfvalg | Unicode version | ||
| Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| Ref | Expression |
|---|---|
| mulgfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.t |
. 2
| |
| 2 | df-mulg 13489 |
. . 3
| |
| 3 | eqidd 2206 |
. . . 4
| |
| 4 | fveq2 5578 |
. . . . 5
| |
| 5 | mulgval.b |
. . . . 5
| |
| 6 | 4, 5 | eqtr4di 2256 |
. . . 4
|
| 7 | fveq2 5578 |
. . . . . 6
| |
| 8 | mulgval.o |
. . . . . 6
| |
| 9 | 7, 8 | eqtr4di 2256 |
. . . . 5
|
| 10 | seqex 10596 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | id 19 |
. . . . . . . . 9
| |
| 13 | fveq2 5578 |
. . . . . . . . . . 11
| |
| 14 | mulgval.p |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 16 | 15 | seqeq2d 10601 |
. . . . . . . . 9
|
| 17 | 12, 16 | sylan9eqr 2260 |
. . . . . . . 8
|
| 18 | 17 | fveq1d 5580 |
. . . . . . 7
|
| 19 | simpl 109 |
. . . . . . . . . 10
| |
| 20 | 19 | fveq2d 5582 |
. . . . . . . . 9
|
| 21 | mulgval.i |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr4di 2256 |
. . . . . . . 8
|
| 23 | 17 | fveq1d 5580 |
. . . . . . . 8
|
| 24 | 22, 23 | fveq12d 5585 |
. . . . . . 7
|
| 25 | 18, 24 | ifeq12d 3590 |
. . . . . 6
|
| 26 | 11, 25 | csbied 3140 |
. . . . 5
|
| 27 | 9, 26 | ifeq12d 3590 |
. . . 4
|
| 28 | 3, 6, 27 | mpoeq123dv 6009 |
. . 3
|
| 29 | elex 2783 |
. . 3
| |
| 30 | zex 9383 |
. . . 4
| |
| 31 | basfn 12923 |
. . . . . 6
| |
| 32 | funfvex 5595 |
. . . . . . 7
| |
| 33 | 32 | funfni 5377 |
. . . . . 6
|
| 34 | 31, 29, 33 | sylancr 414 |
. . . . 5
|
| 35 | 5, 34 | eqeltrid 2292 |
. . . 4
|
| 36 | mpoexga 6300 |
. . . 4
| |
| 37 | 30, 35, 36 | sylancr 414 |
. . 3
|
| 38 | 2, 28, 29, 37 | fvmptd3 5675 |
. 2
|
| 39 | 1, 38 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-neg 8248 df-inn 9039 df-z 9375 df-seqfrec 10595 df-ndx 12868 df-slot 12869 df-base 12871 df-mulg 13489 |
| This theorem is referenced by: mulgval 13491 mulgex 13492 mulgfng 13493 mulgpropdg 13533 |
| Copyright terms: Public domain | W3C validator |