ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfvalg Unicode version

Theorem mulgfvalg 12841
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfvalg  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Distinct variable groups:    x,  .0. , n    x, B, n    x,  .+ , n    x, G, n    x, I, n
Allowed substitution hints:    .x. ( x, n)    V( x, n)

Proof of Theorem mulgfvalg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2  |-  .x.  =  (.g
`  G )
2 df-mulg 12840 . . 3  |- .g  =  (
w  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) ) )
3 eqidd 2174 . . . 4  |-  ( w  =  G  ->  ZZ  =  ZZ )
4 fveq2 5504 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 mulgval.b . . . . 5  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2224 . . . 4  |-  ( w  =  G  ->  ( Base `  w )  =  B )
7 fveq2 5504 . . . . . 6  |-  ( w  =  G  ->  ( 0g `  w )  =  ( 0g `  G
) )
8 mulgval.o . . . . . 6  |-  .0.  =  ( 0g `  G )
97, 8eqtr4di 2224 . . . . 5  |-  ( w  =  G  ->  ( 0g `  w )  =  .0.  )
10 seqex 10412 . . . . . . 7  |-  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  e.  _V
1110a1i 9 . . . . . 6  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  e. 
_V )
12 id 19 . . . . . . . . 9  |-  ( s  =  seq 1 ( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  ->  s  =  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) ) )
13 fveq2 5504 . . . . . . . . . . 11  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
14 mulgval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2224 . . . . . . . . . 10  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
1615seqeq2d 10417 . . . . . . . . 9  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  =  seq 1 (  .+  ,  ( NN  X.  { x } ) ) )
1712, 16sylan9eqr 2228 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
s  =  seq 1
(  .+  ,  ( NN  X.  { x }
) ) )
1817fveq1d 5506 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) )
19 simpl 109 . . . . . . . . . 10  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  w  =  G )
2019fveq2d 5508 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  ( invg `  G
) )
21 mulgval.i . . . . . . . . 9  |-  I  =  ( invg `  G )
2220, 21eqtr4di 2224 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  I )
2317fveq1d 5506 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  -u n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )
2422, 23fveq12d 5511 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( ( invg `  w ) `  (
s `  -u n ) )  =  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) )
2518, 24ifeq12d 3548 . . . . . 6  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `  (
s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )
2611, 25csbied 3098 . . . . 5  |-  ( w  =  G  ->  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  n ) ,  ( I `  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  -u n
) ) ) )
279, 26ifeq12d 3548 . . . 4  |-  ( w  =  G  ->  if ( n  =  0 ,  ( 0g `  w ) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) )  =  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
283, 6, 27mpoeq123dv 5924 . . 3  |-  ( w  =  G  ->  (
n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
29 elex 2744 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
30 zex 9230 . . . 4  |-  ZZ  e.  _V
31 basfn 12482 . . . . . 6  |-  Base  Fn  _V
32 funfvex 5521 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3332funfni 5305 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3431, 29, 33sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
355, 34eqeltrid 2260 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
36 mpoexga 6200 . . . 4  |-  ( ( ZZ  e.  _V  /\  B  e.  _V )  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
3730, 35, 36sylancr 414 . . 3  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
382, 28, 29, 37fvmptd3 5598 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
391, 38eqtrid 2218 1  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1351    e. wcel 2144   _Vcvv 2733   [_csb 3052   ifcif 3529   {csn 3586   class class class wbr 3995    X. cxp 4615    Fn wfn 5200   ` cfv 5205    e. cmpo 5864   0cc0 7783   1c1 7784    < clt 7963   -ucneg 8100   NNcn 8887   ZZcz 9221    seqcseq 10410   Basecbs 12425   +g cplusg 12489   0gc0g 12623   invgcminusg 12736  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3or 977  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-neg 8102  df-inn 8888  df-z 9222  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-mulg 12840
This theorem is referenced by:  mulgval  12842  mulgfng  12843
  Copyright terms: Public domain W3C validator