| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgfvalg | Unicode version | ||
| Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| Ref | Expression |
|---|---|
| mulgfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.t |
. 2
| |
| 2 | df-mulg 13326 |
. . 3
| |
| 3 | eqidd 2197 |
. . . 4
| |
| 4 | fveq2 5561 |
. . . . 5
| |
| 5 | mulgval.b |
. . . . 5
| |
| 6 | 4, 5 | eqtr4di 2247 |
. . . 4
|
| 7 | fveq2 5561 |
. . . . . 6
| |
| 8 | mulgval.o |
. . . . . 6
| |
| 9 | 7, 8 | eqtr4di 2247 |
. . . . 5
|
| 10 | seqex 10558 |
. . . . . . 7
| |
| 11 | 10 | a1i 9 |
. . . . . 6
|
| 12 | id 19 |
. . . . . . . . 9
| |
| 13 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 14 | mulgval.p |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 16 | 15 | seqeq2d 10563 |
. . . . . . . . 9
|
| 17 | 12, 16 | sylan9eqr 2251 |
. . . . . . . 8
|
| 18 | 17 | fveq1d 5563 |
. . . . . . 7
|
| 19 | simpl 109 |
. . . . . . . . . 10
| |
| 20 | 19 | fveq2d 5565 |
. . . . . . . . 9
|
| 21 | mulgval.i |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr4di 2247 |
. . . . . . . 8
|
| 23 | 17 | fveq1d 5563 |
. . . . . . . 8
|
| 24 | 22, 23 | fveq12d 5568 |
. . . . . . 7
|
| 25 | 18, 24 | ifeq12d 3581 |
. . . . . 6
|
| 26 | 11, 25 | csbied 3131 |
. . . . 5
|
| 27 | 9, 26 | ifeq12d 3581 |
. . . 4
|
| 28 | 3, 6, 27 | mpoeq123dv 5988 |
. . 3
|
| 29 | elex 2774 |
. . 3
| |
| 30 | zex 9352 |
. . . 4
| |
| 31 | basfn 12761 |
. . . . . 6
| |
| 32 | funfvex 5578 |
. . . . . . 7
| |
| 33 | 32 | funfni 5361 |
. . . . . 6
|
| 34 | 31, 29, 33 | sylancr 414 |
. . . . 5
|
| 35 | 5, 34 | eqeltrid 2283 |
. . . 4
|
| 36 | mpoexga 6279 |
. . . 4
| |
| 37 | 30, 35, 36 | sylancr 414 |
. . 3
|
| 38 | 2, 28, 29, 37 | fvmptd3 5658 |
. 2
|
| 39 | 1, 38 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-neg 8217 df-inn 9008 df-z 9344 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-mulg 13326 |
| This theorem is referenced by: mulgval 13328 mulgex 13329 mulgfng 13330 mulgpropdg 13370 |
| Copyright terms: Public domain | W3C validator |