ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfvalg Unicode version

Theorem mulgfvalg 13658
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfvalg  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Distinct variable groups:    x,  .0. , n    x, B, n    x,  .+ , n    x, G, n    x, I, n
Allowed substitution hints:    .x. ( x, n)    V( x, n)

Proof of Theorem mulgfvalg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2  |-  .x.  =  (.g
`  G )
2 df-mulg 13657 . . 3  |- .g  =  (
w  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) ) )
3 eqidd 2230 . . . 4  |-  ( w  =  G  ->  ZZ  =  ZZ )
4 fveq2 5627 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 mulgval.b . . . . 5  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2280 . . . 4  |-  ( w  =  G  ->  ( Base `  w )  =  B )
7 fveq2 5627 . . . . . 6  |-  ( w  =  G  ->  ( 0g `  w )  =  ( 0g `  G
) )
8 mulgval.o . . . . . 6  |-  .0.  =  ( 0g `  G )
97, 8eqtr4di 2280 . . . . 5  |-  ( w  =  G  ->  ( 0g `  w )  =  .0.  )
10 seqex 10671 . . . . . . 7  |-  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  e.  _V
1110a1i 9 . . . . . 6  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  e. 
_V )
12 id 19 . . . . . . . . 9  |-  ( s  =  seq 1 ( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  ->  s  =  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) ) )
13 fveq2 5627 . . . . . . . . . . 11  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
14 mulgval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2280 . . . . . . . . . 10  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
1615seqeq2d 10676 . . . . . . . . 9  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  =  seq 1 (  .+  ,  ( NN  X.  { x } ) ) )
1712, 16sylan9eqr 2284 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
s  =  seq 1
(  .+  ,  ( NN  X.  { x }
) ) )
1817fveq1d 5629 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) )
19 simpl 109 . . . . . . . . . 10  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  w  =  G )
2019fveq2d 5631 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  ( invg `  G
) )
21 mulgval.i . . . . . . . . 9  |-  I  =  ( invg `  G )
2220, 21eqtr4di 2280 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  I )
2317fveq1d 5629 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  -u n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )
2422, 23fveq12d 5634 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( ( invg `  w ) `  (
s `  -u n ) )  =  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) )
2518, 24ifeq12d 3622 . . . . . 6  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `  (
s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )
2611, 25csbied 3171 . . . . 5  |-  ( w  =  G  ->  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  n ) ,  ( I `  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  -u n
) ) ) )
279, 26ifeq12d 3622 . . . 4  |-  ( w  =  G  ->  if ( n  =  0 ,  ( 0g `  w ) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) )  =  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
283, 6, 27mpoeq123dv 6066 . . 3  |-  ( w  =  G  ->  (
n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
29 elex 2811 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
30 zex 9455 . . . 4  |-  ZZ  e.  _V
31 basfn 13091 . . . . . 6  |-  Base  Fn  _V
32 funfvex 5644 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3332funfni 5423 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3431, 29, 33sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
355, 34eqeltrid 2316 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
36 mpoexga 6358 . . . 4  |-  ( ( ZZ  e.  _V  /\  B  e.  _V )  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
3730, 35, 36sylancr 414 . . 3  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V )
382, 28, 29, 37fvmptd3 5728 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
391, 38eqtrid 2274 1  |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   [_csb 3124   ifcif 3602   {csn 3666   class class class wbr 4083    X. cxp 4717    Fn wfn 5313   ` cfv 5318    e. cmpo 6003   0cc0 7999   1c1 8000    < clt 8181   -ucneg 8318   NNcn 9110   ZZcz 9446    seqcseq 10669   Basecbs 13032   +g cplusg 13110   0gc0g 13289   invgcminusg 13534  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-neg 8320  df-inn 9111  df-z 9447  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-mulg 13657
This theorem is referenced by:  mulgval  13659  mulgex  13660  mulgfng  13661  mulgpropdg  13701
  Copyright terms: Public domain W3C validator