HomeHome Intuitionistic Logic Explorer
Theorem List (p. 130 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12901-13000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremimasaddval 12901* The value of an image structure's group operation. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  (
 ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `
  X )  .xb  ( F `  Y ) )  =  ( F `
  ( X  .x.  Y ) ) )
 
Theoremimasaddf 12902* The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb 
 : ( B  X.  B ) --> B )
 
Theoremimasmulfn 12903* The image structure's ring multiplication is a function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasmulval 12904* The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `  X ) 
 .xb  ( F `  Y ) )  =  ( F `  ( X  .x.  Y ) ) )
 
Theoremimasmulf 12905* The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   &    |-  ( ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p 
 .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb  : ( B  X.  B ) --> B )
 
Theoremqusval 12906* Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  ( F  "s  R )
 )
 
Theoremquslem 12907* The function in qusval 12906 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
 
Theoremqusex 12908 Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( R  e.  V  /\  .~  e.  W )  ->  ( R  /.s  .~  )  e.  _V )
 
Theoremqusin 12909 Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  (  .~  " V )  C_  V )   =>    |-  ( ph  ->  U  =  ( R  /.s  (  .~  i^i  ( V  X.  V ) ) ) )
 
Theoremqusbas 12910 Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  ( V /.  .~  )  =  ( Base `  U )
 )
 
Theoremdivsfval 12911* Value of the function in qusval 12906. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
Theoremdivsfvalg 12912* Value of the function in qusval 12906. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
Theoremercpbllemg 12913* Lemma for ercpbl 12914. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   =>    |-  ( ph  ->  (
 ( F `  A )  =  ( F `  B )  <->  A  .~  B ) )
 
Theoremercpbl 12914* Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  (
 ( ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  ( a  .+  b )  e.  V )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
 
Theoremerlecpbl 12915* Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A N B  <->  C N D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( A N B  <->  C N D ) ) )
 
Theoremqusaddvallemg 12916* Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  .x. 
 e.  W )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
 ( X  .x.  Y ) ]  .~  )
 
Theoremqusaddflemg 12917* The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  .x. 
 e.  W )   =>    |-  ( ph  ->  .xb 
 : ( ( V
 /.  .~  )  X.  ( V /.  .~  )
 ) --> ( V /.  .~  ) )
 
Theoremqusaddval 12918* The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  (
 ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
 ( X  .x.  Y ) ]  .~  )
 
Theoremqusaddf 12919* The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  ( ph  ->  .xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V
 /.  .~  ) )
 
Theoremqusmulval 12920* The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
 ( X  .x.  Y ) ]  .~  )
 
Theoremqusmulf 12921* The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V
 /.  .~  ) )
 
Theoremfnpr2o 12922 Function with a domain of  2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. ,  <. 1o ,  B >. }  Fn  2o )
 
Theoremfnpr2ob 12923 Biconditional version of fnpr2o 12922. (Contributed by Jim Kingdon, 27-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  { <. (/) ,  A >. , 
 <. 1o ,  B >. }  Fn  2o )
 
Theoremfvpr0o 12924 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( A  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
 
Theoremfvpr1o 12925 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( B  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
 
Theoremfvprif 12926 The value of the pair function at an element of  2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
 
Theoremxpsfrnel 12927* Elementhood in the target space of the function  F appearing in xpsval 12935. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `  1o )  e.  B ) )
 
Theoremxpsfeq 12928 A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
 |-  ( G  Fn  2o  ->  { <. (/) ,  ( G `
  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. }  =  G )
 
Theoremxpsfrnel2 12929* Elementhood in the target space of the function  F appearing in xpsval 12935. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( X  e.  A  /\  Y  e.  B ) )
 
Theoremxpscf 12930 Equivalent condition for the pair function to be a proper function on  A. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )
 
Theoremxpsfval 12931* The value of the function appearing in xpsval 12935. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X F Y )  =  { <.
 (/) ,  X >. , 
 <. 1o ,  Y >. } )
 
Theoremxpsff1o 12932* The function appearing in xpsval 12935 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |-  F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
 
Theoremxpsfrn 12933* A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |- 
 ran  F  =  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
 
Theoremxpsff1o2 12934* The function appearing in xpsval 12935 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |-  F : ( A  X.  B ) -1-1-onto-> ran  F
 
Theoremxpsval 12935* Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |-  T  =  ( R  X.s  S )   &    |-  X  =  (
 Base `  R )   &    |-  Y  =  ( Base `  S )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  S  e.  W )   &    |-  F  =  ( x  e.  X ,  y  e.  Y  |->  { <. (/) ,  x >. ,  <. 1o ,  y >. } )   &    |-  G  =  (Scalar `  R )   &    |-  U  =  ( G X_s { <. (/) ,  R >. , 
 <. 1o ,  S >. } )   =>    |-  ( ph  ->  T  =  ( `' F  "s  U ) )
 
PART 7  BASIC ALGEBRAIC STRUCTURES
 
7.1  Monoids
 
7.1.1  Magmas

According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.".

Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following:

With df-mpo 5923, binary operations are defined by a rule, and with df-ov 5921, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation 5921 (19-Jan-2020), "... a binary operation on a set  S is a mapping of the elements of the Cartesian product 
S  X.  S to S:  f : S  X.  S --> S. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product  S  X.  S are more precisely called internal binary operations. If, in addition, the result is also contained in the set  S, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set  S" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 5921).

The definition of magmas (Mgm, see df-mgm 12939) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible.

 
Syntaxcplusf 12936 Extend class notation with group addition as a function.
 class  +f
 
Syntaxcmgm 12937 Extend class notation with class of all magmas.
 class Mgm
 
Definitiondf-plusf 12938* Define group addition function. Usually we will use  +g directly instead of  +f, and they have the same behavior in most cases. The main advantage of  +f for any magma is that it is a guaranteed function (mgmplusf 12949), while  +g only has closure (mgmcl 12942). (Contributed by Mario Carneiro, 14-Aug-2015.)
 |- 
 +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g ) y ) ) )
 
Definitiondf-mgm 12939* A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |- Mgm 
 =  { g  | 
 [. ( Base `  g
 )  /  b ]. [. ( +g  `  g
 )  /  o ]. A. x  e.  b  A. y  e.  b  ( x o y )  e.  b }
 
Theoremismgm 12940* The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B ) )
 
Theoremismgmn0 12941* The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( A  e.  B  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B ) )
 
Theoremmgmcl 12942 Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( M  e. Mgm  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
Theoremisnmgm 12943 A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( X  e.  B  /\  Y  e.  B  /\  ( X  .o.  Y ) 
 e/  B )  ->  M  e/ Mgm )
 
Theoremmgmsscl 12944 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S 
 C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 /\  ( X  e.  S  /\  Y  e.  S ) )  ->  ( X ( +g  `  G ) Y )  e.  S )
 
Theoremplusffvalg 12945* The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  V  -> 
 .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y ) ) )
 
Theoremplusfvalg 12946 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .+^  Y )  =  ( X  .+  Y ) )
 
Theoremplusfeqg 12947 If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( ( G  e.  V  /\  .+  Fn  ( B  X.  B ) ) 
 ->  .+^  =  .+  )
 
Theoremplusffng 12948 The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  V  -> 
 .+^  Fn  ( B  X.  B ) )
 
Theoremmgmplusf 12949 The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .+^  =  ( +f `  M )   =>    |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )
 
Theoremintopsn 12950 The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
 |-  ( (  .o.  :
 ( B  X.  B )
 --> B  /\  Z  e.  B )  ->  ( B  =  { Z }  <->  .o. 
 =  { <. <. Z ,  Z >. ,  Z >. } ) )
 
Theoremmgmb1mgm1 12951 The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .+  =  ( +g  `  M )   =>    |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B ) ) 
 ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
 
Theoremmgm0 12952 Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
 |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Mgm )
 
Theoremmgm1 12953 The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e. Mgm )
 
Theoremopifismgmdc 12954* A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  ( +g  `  M )  =  ( x  e.  B ,  y  e.  B  |->  if ( ps ,  C ,  D )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  -> DECID  ps )   &    |-  ( ph  ->  E. x  x  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  C  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )   =>    |-  ( ph  ->  M  e. Mgm )
 
7.1.2  Identity elements

According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 12955) is an important property of monoids, and therefore also for groups, but also for magmas not required to be associative. Magmas with an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15).

In the context of extensible structures, the identity element (of any magma  M) is defined as "group identity element"  ( 0g `  M
), see df-0g 12869. Related theorems which are already valid for magmas are provided in the following.

 
Theoremmgmidmo 12955* A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
 |- 
 E* u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )
 
Theoremgrpidvalg 12956* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  V  ->  .0.  =  ( iota
 e ( e  e.  B  /\  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) ) ) )
 
Theoremgrpidpropdg 12957* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( 0g `  K )  =  ( 0g `  L ) )
 
Theoremfn0g 12958 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |- 
 0g  Fn  _V
 
Theorem0g0 12959 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
 |-  (/)  =  ( 0g `  (/) )
 
Theoremismgmid 12960* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )
 ) 
 <->  .0.  =  U ) )
 
Theoremmgmidcl 12961* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ph  ->  .0. 
 e.  B )
 
Theoremmgmlrid 12962* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X )
 )
 
Theoremismgmid2 12963* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  U  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( U  .+  x )  =  x )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( x  .+  U )  =  x )   =>    |-  ( ph  ->  U  =  .0.  )
 
Theoremlidrideqd 12964* If there is a left and right identity element for any binary operation (group operation)  .+, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   =>    |-  ( ph  ->  L  =  R )
 
Theoremlidrididd 12965* If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 12964) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  L  =  .0.  )
 
Theoremgrpidd 12966* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  (  .0.  .+  x )  =  x )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )   =>    |-  ( ph  ->  .0.  =  ( 0g `  G ) )
 
Theoremmgmidsssn0 12967* Property of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the  0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x 
 .+  y )  =  y  /\  ( y 
 .+  x )  =  y ) }   =>    |-  ( G  e.  V  ->  O  C_  {  .0.  } )
 
Theoremgrpinvalem 12968* Lemma for grpinva 12969. (Contributed by NM, 9-Aug-2013.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( X  .+  X )  =  X )   =>    |-  ( ( ph  /\  ps )  ->  X  =  O )
 
Theoremgrpinva 12969* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  N  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( N  .+  X )  =  O )   =>    |-  ( ( ph  /\  ps )  ->  ( X  .+  N )  =  O )
 
Theoremgrprida 12970* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   =>    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  O )  =  x )
 
7.1.3  Iterated sums in a magma

The symbol  gsumg is mostly used in the context of abelian groups. Therefore, it is usually called "group sum". It can be defined, however, in arbitrary magmas (then it should be called "iterated sum"). If the magma is not required to be commutative or associative, then the order of the summands and the order in which summations are done become important. If the magma is not unital, then one cannot define a meaningful empty sum. See the comment for df-igsum 12870.

 
Theoremfngsum 12971 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |- 
 gsumg  Fn  ( _V  X.  _V )
 
Theoremigsumvalx 12972* Expand out the substitutions in df-igsum 12870. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  X )   &    |-  ( ph  ->  dom  F  =  A )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
 `  m ) ( A  =  ( m
 ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n ) ) ) ) )
 
Theoremigsumval 12973* Expand out the substitutions in df-igsum 12870. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
 `  m ) ( A  =  ( m
 ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n ) ) ) ) )
 
Theoremgsumfzval 12974 An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `
  N ) ) )
 
Theoremgsumpropd 12975 The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsumpropd2 12976* A stronger version of gsumpropd 12975, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 12977. (Contributed by Thierry Arnoux, 28-Jun-2017.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ( ph  /\  (
 s  e.  ( Base `  G )  /\  t  e.  ( Base `  G )
 ) )  ->  (
 s ( +g  `  G ) t )  e.  ( Base `  G )
 )   &    |-  ( ( ph  /\  (
 s  e.  ( Base `  G )  /\  t  e.  ( Base `  G )
 ) )  ->  (
 s ( +g  `  G ) t )  =  ( s ( +g  `  H ) t ) )   &    |-  ( ph  ->  Fun 
 F )   &    |-  ( ph  ->  ran 
 F  C_  ( Base `  G ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsummgmpropd 12977* A stronger version of gsumpropd 12975 if at least one of the involved structures is a magma, see gsumpropd2 12976. (Contributed by AV, 31-Jan-2020.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  G  e. Mgm )   &    |-  ( ( ph  /\  ( s  e.  ( Base `  G )  /\  t  e.  ( Base `  G ) ) ) 
 ->  ( s ( +g  `  G ) t )  =  ( s (
 +g  `  H )
 t ) )   &    |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  ran  F  C_  ( Base `  G ) )   =>    |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
 
Theoremgsumress 12978* The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  H  =  ( Gs  S )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  .0.  e.  S )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x )
 )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsum0g 12979 Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
 
Theoremgsumval2 12980 Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( 
 seq M (  .+  ,  F ) `  N ) )
 
Theoremgsumsplit1r 12981 Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... ( N  +  1
 ) ) --> B )   =>    |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M
 ... N ) ) )  .+  ( F `
  ( N  +  1 ) ) ) )
 
Theoremgsumprval 12982 Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  =  ( M  +  1 ) )   &    |-  ( ph  ->  F : { M ,  N } --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( F `  M )  .+  ( F `  N ) ) )
 
Theoremgsumpr12val 12983 Value of the group sum operation over the pair  { 1 ,  2 }. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F : { 1 ,  2 } --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( F `  1
 )  .+  ( F `  2 ) ) )
 
7.1.4  Semigroups

A semigroup (Smgrp, see df-sgrp 12985) is a set together with an associative binary operation (see Wikipedia, Semigroup, 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup 12985). In other words, a semigroup is an associative magma. The notion of semigroup is a generalization of that of group where the existence of an identity or inverses is not required.

 
Syntaxcsgrp 12984 Extend class notation with class of all semigroups.
 class Smgrp
 
Definitiondf-sgrp 12985* A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 12939), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
 
Theoremissgrp 12986* The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e. Smgrp  <->  ( M  e. Mgm  /\ 
 A. x  e.  B  A. y  e.  B  A. z  e.  B  (
 ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) )
 
Theoremissgrpv 12987* The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) ) )
 
Theoremissgrpn0 12988* The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( A  e.  B  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) ) )
 
Theoremisnsgrp 12989 A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
 Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )
 
Theoremsgrpmgm 12990 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  ( M  e. Smgrp  ->  M  e. Mgm )
 
Theoremsgrpass 12991 A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .o.  Y )  .o. 
 Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
 
Theoremsgrpcl 12992 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
Theoremsgrp0 12993 Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
 |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )
 
Theoremsgrp1 12994 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e. Smgrp )
 
Theoremissgrpd 12995* Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  G  e. Smgrp )
 
Theoremsgrppropd 12996* If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  ( ph  ->  B  =  (
 Base `  K ) )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Smgrp  <->  L  e. Smgrp ) )
 
7.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 12998, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 13000. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 12997 Extend class notation with class of all monoids.
 class  Mnd
 
Definitiondf-mnd 12998* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 13004), whose operation is associative (see mndass 13005) and has a two-sided neutral element (see mndid 13006), see also ismnd 13000. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
 |- 
 Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
 )  /  p ]. E. e  e.  b  A. x  e.  b  ( ( e p x )  =  x  /\  ( x p e )  =  x ) }
 
Theoremismnddef 12999* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
 .+  a )  =  a  /\  ( a 
 .+  e )  =  a ) ) )
 
Theoremismnd 13000* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13004), whose operation is associative (so, a semigroup, see also mndass 13005) and has a two-sided neutral element (see mndid 13006). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd  <->  (
 A. a  e.  B  A. b  e.  B  ( ( a  .+  b
 )  e.  B  /\  A. c  e.  B  ( ( a  .+  b
 )  .+  c )  =  ( a  .+  (
 b  .+  c )
 ) )  /\  E. e  e.  B  A. a  e.  B  ( ( e 
 .+  a )  =  a  /\  ( a 
 .+  e )  =  a ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >