HomeHome Intuitionistic Logic Explorer
Theorem List (p. 130 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12901-13000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtxtopi 12901 The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   =>    |-  ( R  tX  S )  e.  Top
 
Theoremtxtopon 12902 The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( R 
 tX  S )  e.  (TopOn `  ( X  X.  Y ) ) )
 
Theoremtxuni 12903 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y )  =  U. ( R 
 tX  S ) )
 
Theoremtxunii 12904 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   &    |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( X  X.  Y )  =  U. ( R 
 tX  S )
 
Theoremtxopn 12905 The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  R  /\  B  e.  S )
 )  ->  ( A  X.  B )  e.  ( R  tX  S ) )
 
Theoremtxss12 12906 Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( B  e.  V  /\  D  e.  W )  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ( A  tX  C ) 
 C_  ( B  tX  D ) )
 
Theoremtxbasval 12907 It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( ( topGen `  R )  tX  ( topGen `  S ) )  =  ( R  tX  S ) )
 
Theoremneitx 12908 The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  (
 ( nei `  K ) `  D ) ) ) 
 ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `  ( C  X.  D ) ) )
 
Theoremtx1cn 12909 Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  R ) )
 
Theoremtx2cn 12910 Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  S ) )
 
Theoremtxcnp 12911* If two functions are continuous at 
D, then the ordered pair of them is continuous at  D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( ( J  CnP  K ) `
  D ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( ( J  CnP  L ) `  D ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  (
 ( J  CnP  ( K  tX  L ) ) `
  D ) )
 
Theoremupxp 12912* Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  P  =  ( 1st  |`  ( B  X.  C ) )   &    |-  Q  =  ( 2nd  |`  ( B  X.  C ) )   =>    |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h ( h : A
 --> ( B  X.  C )  /\  F  =  ( P  o.  h ) 
 /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcnmpt 12913* A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  W  =  U. U   &    |-  H  =  ( x  e.  W  |->  <.
 ( F `  x ) ,  ( G `  x ) >. )   =>    |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S ) ) )
 
Theoremuptx 12914* Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  T  =  ( R 
 tX  S )   &    |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( F  e.  ( U  Cn  R ) 
 /\  G  e.  ( U  Cn  S ) ) 
 ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcn 12915 A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  W  =  U. U   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( R  e.  Top  /\  S  e.  Top  /\  F : W --> Z ) 
 ->  ( F  e.  ( U  Cn  ( R  tX  S ) )  <->  ( ( P  o.  F )  e.  ( U  Cn  R )  /\  ( Q  o.  F )  e.  ( U  Cn  S ) ) ) )
 
Theoremtxrest 12916 The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
 )  ->  ( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A )  tX  ( St  B ) ) )
 
Theoremtxdis 12917 The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX 
 ~P B )  =  ~P ( A  X.  B ) )
 
Theoremtxdis1cn 12918* A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  J  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  F  Fn  ( X  X.  Y ) )   &    |-  ( ( ph  /\  x  e.  X )  ->  (
 y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  F  e.  ( ( ~P X  tX  J )  Cn  K ) )
 
Theoremtxlm 12919* Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  H  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )   =>    |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. ) )
 
Theoremlmcn2 12920* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  ( ph  ->  F ( ~~> t `  J ) R )   &    |-  ( ph  ->  G ( ~~> t `  K ) S )   &    |-  ( ph  ->  O  e.  ( ( J 
 tX  K )  Cn  N ) )   &    |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )   =>    |-  ( ph  ->  H (
 ~~> t `  N ) ( R O S ) )
 
8.1.9  Continuous function-builders
 
Theoremcnmptid 12921* The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   =>    |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
 
Theoremcnmptc 12922* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  P  e.  Y )   =>    |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
 
Theoremcnmpt11 12923* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  ( y  e.  Y  |->  B )  e.  ( K  Cn  L ) )   &    |-  ( y  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
 
Theoremcnmpt11f 12924* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  F  e.  ( K  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( F `  A ) )  e.  ( J  Cn  L ) )
 
Theoremcnmpt1t 12925* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
 
Theoremcnmpt12f 12926* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( ( K 
 tX  L )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
 
Theoremcnmpt12 12927* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  ( y  e.  Y ,  z  e.  Z  |->  C )  e.  ( ( K 
 tX  L )  Cn  M ) )   &    |-  (
 ( y  =  A  /\  z  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  X  |->  D )  e.  ( J  Cn  M ) )
 
Theoremcnmpt1st 12928* The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J 
 tX  K )  Cn  J ) )
 
Theoremcnmpt2nd 12929* The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J 
 tX  K )  Cn  K ) )
 
Theoremcnmpt2c 12930* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  P  e.  Z )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J 
 tX  K )  Cn  L ) )
 
Theoremcnmpt21 12931* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )   &    |-  ( z  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J 
 tX  K )  Cn  M ) )
 
Theoremcnmpt21f 12932* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( L  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  A ) )  e.  ( ( J  tX  K )  Cn  M ) )
 
Theoremcnmpt2t 12933* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. A ,  B >. )  e.  (
 ( J  tX  K )  Cn  ( L  tX  M ) ) )
 
Theoremcnmpt22 12934* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  M  e.  (TopOn `  W ) )   &    |-  ( ph  ->  ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L 
 tX  M )  Cn  N ) )   &    |-  (
 ( z  =  A  /\  w  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  D )  e.  ( ( J 
 tX  K )  Cn  N ) )
 
Theoremcnmpt22f 12935* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   &    |-  ( ph  ->  F  e.  ( ( L 
 tX  M )  Cn  N ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J 
 tX  K )  Cn  N ) )
 
Theoremcnmpt1res 12936* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
 |-  K  =  ( Jt  Y )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  Y  |->  A )  e.  ( K  Cn  L ) )
 
Theoremcnmpt2res 12937* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  K  =  ( Jt  Y )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  N  =  ( Mt  W )   &    |-  ( ph  ->  M  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  W 
 C_  Z )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M )  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K 
 tX  N )  Cn  L ) )
 
Theoremcnmptcom 12938* The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   =>    |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K 
 tX  J )  Cn  L ) )
 
Theoremimasnopn 12939 If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X )
 )  ->  ( R " { A } )  e.  K )
 
8.1.10  Homeomorphisms
 
Syntaxchmeo 12940 Extend class notation with the class of all homeomorphisms.
 class  Homeo
 
Definitiondf-hmeo 12941* Function returning all the homeomorphisms from topology  j to topology  k. (Contributed by FL, 14-Feb-2007.)
 |- 
 Homeo  =  ( j  e.  Top ,  k  e. 
 Top  |->  { f  e.  (
 j  Cn  k )  |  `' f  e.  (
 k  Cn  j ) } )
 
Theoremhmeofn 12942 The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |- 
 Homeo  Fn  ( Top  X.  Top )
 
Theoremhmeofvalg 12943* The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } )
 
Theoremishmeo 12944 The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K ) 
 /\  `' F  e.  ( K  Cn  J ) ) )
 
Theoremhmeocn 12945 A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K ) )
 
Theoremhmeocnvcn 12946 The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J ) )
 
Theoremhmeocnv 12947 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K Homeo J ) )
 
Theoremhmeof1o2 12948 A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) ) 
 ->  F : X -1-1-onto-> Y )
 
Theoremhmeof1o 12949 A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y )
 
Theoremhmeoima 12950 The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  A  e.  J )  ->  ( F " A )  e.  K )
 
Theoremhmeoopn 12951 Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K ) )
 
Theoremhmeocld 12952 Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  ( Clsd `  K ) ) )
 
Theoremhmeontr 12953 Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( ( int `  K ) `  ( F " A ) )  =  ( F " (
 ( int `  J ) `  A ) ) )
 
Theoremhmeoimaf1o 12954* The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  G  =  ( x  e.  J  |->  ( F
 " x ) )   =>    |-  ( F  e.  ( J Homeo K )  ->  G : J -1-1-onto-> K )
 
Theoremhmeores 12955 The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) Homeo ( Kt  ( F
 " Y ) ) ) )
 
Theoremhmeoco 12956 The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
 
Theoremidhmeo 12957 The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  (  _I  |`  X )  e.  ( J Homeo J ) )
 
Theoremhmeocnvb 12958 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( Rel  F  ->  ( `' F  e.  ( J Homeo K )  <->  F  e.  ( K Homeo J ) ) )
 
Theoremtxhmeo 12959* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( J Homeo L ) )   &    |-  ( ph  ->  G  e.  ( K Homeo M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. ( F `
  x ) ,  ( G `  y
 ) >. )  e.  (
 ( J  tX  K ) Homeo ( L  tX  M ) ) )
 
Theoremtxswaphmeolem 12960* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
 
Theoremtxswaphmeo 12961* There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) Homeo ( K  tX  J ) ) )
 
8.2  Metric spaces
 
8.2.1  Pseudometric spaces
 
Theorempsmetrel 12962 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
 |- 
 Rel PsMet
 
Theoremispsmet 12963* Express the predicate " D is a pseudometric". (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X )  <->  ( D :
 ( X  X.  X )
 --> RR*  /\  A. x  e.  X  ( ( x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theorempsmetdmdm 12964 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  X  =  dom  dom  D )
 
Theorempsmetf 12965 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theorempsmetcl 12966 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR* )
 
Theorempsmet0 12967 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
 
Theorempsmettri2 12968 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theorempsmetsym 12969 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theorempsmettri 12970 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theorempsmetge0 12971 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theorempsmetxrge0 12972 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
 
Theorempsmetres2 12973 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R ) )
 
Theorempsmetlecl 12974 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X ) 
 /\  ( C  e.  RR  /\  ( A D B )  <_  C ) )  ->  ( A D B )  e.  RR )
 
Theoremdistspace 12975 A set  X together with a (distance) function  D which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set  X equipped with a distance  D, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( ( D :
 ( X  X.  X )
 --> RR*  /\  ( A D A )  =  0 )  /\  ( 0 
 <_  ( A D B )  /\  ( A D B )  =  ( B D A ) ) ) )
 
8.2.2  Basic metric space properties
 
Syntaxcxms 12976 Extend class notation with the class of extended metric spaces.
 class  *MetSp
 
Syntaxcms 12977 Extend class notation with the class of metric spaces.
 class  MetSp
 
Syntaxctms 12978 Extend class notation with the function mapping a metric to the metric space it defines.
 class toMetSp
 
Definitiondf-xms 12979 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 *MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  ( MetOpen `  ( ( dist `  f
 )  |`  ( ( Base `  f )  X.  ( Base `  f ) ) ) ) }
 
Definitiondf-ms 12980 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
 |- 
 MetSp  =  { f  e.  *MetSp  |  (
 ( dist `  f )  |`  ( ( Base `  f
 )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f ) ) }
 
Definitiondf-tms 12981 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- toMetSp  =  ( d  e.  U. ran  *Met  |->  ( { <. ( Base `  ndx ) , 
 dom  dom  d >. ,  <. (
 dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
 
Theoremmetrel 12982 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  Met
 
Theoremxmetrel 12983 The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  *Met
 
Theoremismet 12984* Express the predicate " D is a metric". (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D :
 ( X  X.  X )
 --> RR  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
 )  /\  A. z  e.  X  ( x D y )  <_  (
 ( z D x )  +  ( z D y ) ) ) ) ) )
 
Theoremisxmet 12985* Express the predicate " D is an extended metric". (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
 )  /\  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theoremismeti 12986* Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  X  e.  _V   &    |-  D : ( X  X.  X ) --> RR   &    |-  (
 ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <->  x  =  y
 ) )   &    |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( ( z D x )  +  (
 z D y ) ) )   =>    |-  D  e.  ( Met `  X )
 
Theoremisxmetd 12987* Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  D : ( X  X.  X ) --> RR* )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( ( x D y )  =  0  <-> 
 x  =  y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x D y )  <_  ( ( z D x ) +e
 ( z D y ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  X ) )
 
Theoremisxmet2d 12988* It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample:  D ( x ,  y )  =  if ( x  =  y ,  0 , -oo ) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  D : ( X  X.  X ) --> RR* )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
 0  <_  ( x D y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( ( x D y )  <_ 
 0 
 <->  x  =  y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  /\  ( ( z D x )  e. 
 RR  /\  ( z D y )  e. 
 RR ) )  ->  ( x D y ) 
 <_  ( ( z D x )  +  (
 z D y ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  X ) )
 
Theoremmetflem 12989* Lemma for metf 12991 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
 ( ( x D y )  =  0  <-> 
 x  =  y ) 
 /\  A. z  e.  X  ( x D y ) 
 <_  ( ( z D x )  +  (
 z D y ) ) ) ) )
 
Theoremxmetf 12990 Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theoremmetf 12991 Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
 |-  ( D  e.  ( Met `  X )  ->  D : ( X  X.  X ) --> RR )
 
Theoremxmetcl 12992 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( A D B )  e.  RR* )
 
Theoremmetcl 12993 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
 
Theoremismet2 12994 An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
 
Theoremmetxmet 12995 A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  D  e.  ( *Met `  X ) )
 
Theoremxmetdmdm 12996 Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )
 
Theoremmetdmdm 12997 Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  X  =  dom  dom  D )
 
Theoremxmetunirn 12998 Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
 |-  ( D  e.  U. ran  *Met  <->  D  e.  ( *Met `  dom  dom  D ) )
 
Theoremxmeteq0 12999 The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( ( A D B )  =  0  <->  A  =  B ) )
 
Theoremmeteq0 13000 The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( ( A D B )  =  0  <->  A  =  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >