HomeHome Intuitionistic Logic Explorer
Theorem List (p. 130 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12901-13000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembasendxnocndx 12901 The slot for the orthocomplementation is not the slot for the base set in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  ( Base `  ndx )  =/=  ( oc `  ndx )
 
Theoremplendxnocndx 12902 The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( oc `  ndx )
 
Theoremdsndx 12903 Index value of the df-ds 12788 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( dist `  ndx )  = ; 1
 2
 
Theoremdsid 12904 Utility theorem: index-independent form of df-ds 12788. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |- 
 dist  = Slot  ( dist `  ndx )
 
Theoremdsslid 12905 Slot property of  dist. (Contributed by Jim Kingdon, 6-May-2023.)
 |-  ( dist  = Slot  ( dist ` 
 ndx )  /\  ( dist `  ndx )  e. 
 NN )
 
Theoremdsndxnn 12906 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  e. 
 NN
 
Theorembasendxltdsndx 12907 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( dist `  ndx )
 
Theoremdsndxnbasendx 12908 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( Base `  ndx )
 
Theoremdsndxnplusgndx 12909 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( +g  `  ndx )
 
Theoremdsndxnmulrndx 12910 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( .r `  ndx )
 
Theoremslotsdnscsi 12911 The slots Scalar,  .s and  .i are different from the slot  dist. (Contributed by AV, 29-Oct-2024.)
 |-  ( ( dist `  ndx )  =/=  (Scalar `  ndx )  /\  ( dist `  ndx )  =/=  ( .s `  ndx )  /\  ( dist ` 
 ndx )  =/=  ( .i `  ndx ) )
 
Theoremdsndxntsetndx 12912 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( dist `  ndx )  =/=  (TopSet `  ndx )
 
Theoremslotsdifdsndx 12913 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( dist `  ndx )  /\  ( le `  ndx )  =/=  ( dist `  ndx ) )
 
Theoremunifndx 12914 Index value of the df-unif 12789 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.)
 |-  ( UnifSet `  ndx )  = ; 1
 3
 
Theoremunifid 12915 Utility theorem: index-independent form of df-unif 12789. (Contributed by Thierry Arnoux, 17-Dec-2017.)
 |- 
 UnifSet  = Slot  ( UnifSet `  ndx )
 
Theoremunifndxnn 12916 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  e. 
 NN
 
Theorembasendxltunifndx 12917 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( UnifSet `  ndx )
 
Theoremunifndxnbasendx 12918 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  ( Base `  ndx )
 
Theoremunifndxntsetndx 12919 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  (TopSet `  ndx )
 
Theoremslotsdifunifndx 12920 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
 |-  ( ( ( +g  ` 
 ndx )  =/=  ( UnifSet
 `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
 
Theoremhomndx 12921 Index value of the df-hom 12790 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
 |-  ( Hom  `  ndx )  = ; 1 4
 
Theoremhomid 12922 Utility theorem: index-independent form of df-hom 12790. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |- 
 Hom  = Slot  ( Hom  `  ndx )
 
Theoremhomslid 12923 Slot property of  Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e. 
 NN )
 
Theoremccondx 12924 Index value of the df-cco 12791 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
 |-  (comp `  ndx )  = ; 1
 5
 
Theoremccoid 12925 Utility theorem: index-independent form of df-cco 12791. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |- comp  = Slot  (comp `  ndx )
 
Theoremccoslid 12926 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  (comp  = Slot  (comp `  ndx )  /\  (comp `  ndx )  e.  NN )
 
6.1.3  Definition of the structure product
 
Syntaxcrest 12927 Extend class notation with the function returning a subspace topology.
 classt
 
Syntaxctopn 12928 Extend class notation with the topology extractor function.
 class  TopOpen
 
Definitiondf-rest 12929* Function returning the subspace topology induced by the topology  y and the set  x. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
 
Definitiondf-topn 12930 Define the topology extractor function. This differs from df-tset 12785 when a structure has been restricted using df-iress 12697; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen  =  ( w  e. 
 _V  |->  ( (TopSet `  w )t  ( Base `  w )
 ) )
 
Theoremrestfn 12931 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
 |-t  Fn  ( _V  X.  _V )
 
Theoremtopnfn 12932 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen 
 Fn  _V
 
Theoremrestval 12933* The subspace topology induced by the topology  J on the set  A. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
 
Theoremelrest 12934* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
 
Theoremelrestr 12935 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J ) 
 ->  ( A  i^i  S )  e.  ( Jt  S ) )
 
Theoremrestid2 12936 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )
 
Theoremrestsspw 12937 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( Jt  A )  C_  ~P A
 
Theoremrestid 12938 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  V  ->  ( Jt  X )  =  J )
 
Theoremtopnvalg 12939 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( W  e.  V  ->  ( Jt  B )  =  (
 TopOpen `  W ) )
 
Theoremtopnidg 12940 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( ( W  e.  V  /\  J  C_  ~P B )  ->  J  =  (
 TopOpen `  W ) )
 
Theoremtopnpropgd 12941 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
 |-  ( ph  ->  ( Base `  K )  =  ( Base `  L )
 )   &    |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L ) )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   =>    |-  ( ph  ->  ( TopOpen `  K )  =  (
 TopOpen `  L ) )
 
Syntaxctg 12942 Extend class notation with a function that converts a basis to its corresponding topology.
 class  topGen
 
Syntaxcpt 12943 Extend class notation with a function whose value is a product topology.
 class  Xt_
 
Syntaxc0g 12944 Extend class notation with group identity element.
 class  0g
 
Syntaxcgsu 12945 Extend class notation to include finitely supported group sums.
 class  gsumg
 
Definitiondf-0g 12946* Define group identity element. Remark: this definition is required here because the symbol  0g is already used in df-igsum 12947. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
 |- 
 0g  =  ( g  e.  _V  |->  ( iota
 e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g
 ) e )  =  x ) ) ) )
 
Definitiondf-igsum 12947* Define a finite group sum (also called "iterated sum") of a structure.

Given  G  gsumg  F where  F : A --> ( Base `  G ), the set of indices is  A and the values are given by  F at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set  A and each demanding different properties of  G.

1. If  A  =  (/) and  G has an identity element, then the sum equals this identity.

2. If  A  =  ( M ... N ) and 
G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e.,  ( ( F `  1 )  +  ( F ` 
2 ) )  +  ( F `  3
), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

 |- 
 gsumg  =  ( w  e.  _V ,  f  e.  _V  |->  ( iota x ( ( dom  f  =  (/)  /\  x  =  ( 0g
 `  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m
 ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f
 ) `  n )
 ) ) ) )
 
Definitiondf-topgen 12948* Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.)
 |-  topGen  =  ( x  e. 
 _V  |->  { y  |  y 
 C_  U. ( x  i^i  ~P y ) } )
 
Definitiondf-pt 12949* Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.)
 |- 
 Xt_  =  ( f  e.  _V  |->  ( topGen `  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  (
 f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y
 )  =  U. (
 f `  y )
 )  /\  x  =  X_ y  e.  dom  f
 ( g `  y
 ) ) } )
 )
 
Theoremtgval 12950* The topology generated by a basis. See also tgval2 14313 and tgval3 14320. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  ( topGen `  B )  =  { x  |  x  C_ 
 U. ( B  i^i  ~P x ) } )
 
Theoremtgvalex 12951 The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
 |-  ( B  e.  V  ->  ( topGen `  B )  e.  _V )
 
Theoremptex 12952 Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
 |-  ( F  e.  V  ->  ( Xt_ `  F )  e.  _V )
 
Syntaxcprds 12953 The function constructing structure products.
 class  X_s
 
Syntaxcpws 12954 The function constructing structure powers.
 class  ^s
 
Definitiondf-prds 12955* Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  X_s  =  ( s  e.  _V ,  r  e.  _V  |->  [_ X_ x  e.  dom  r ( Base `  (
 r `  x )
 )  /  v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
  x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
 Base `  ndx ) ,  v >. ,  <. ( +g  ` 
 ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x ) ) ( g `
  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `
  x ) ( .r `  ( r `
  x ) ) ( g `  x ) ) ) )
 >. }  u.  { <. (Scalar `  ndx ) ,  s >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  s
 ) ,  g  e.  v  |->  ( x  e. 
 dom  r  |->  ( f ( .s `  (
 r `  x )
 ) ( g `  x ) ) ) ) >. ,  <. ( .i
 `  ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
  x ) ( .i `  ( r `
  x ) ) ( g `  x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
 ) >. ,  <. ( le ` 
 ndx ) ,  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  ( r `  x ) ) ( g `
  x ) ) } >. ,  <. ( dist ` 
 ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  sup ( ( ran  ( x  e.  dom  r  |->  ( ( f `  x ) ( dist `  (
 r `  x )
 ) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. , 
 <. (comp `  ndx ) ,  ( a  e.  (
 v  X.  v ) ,  c  e.  v  |->  ( d  e.  (
 ( 2nd `  a ) h c ) ,  e  e.  ( h `
  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <. ( ( 1st `  a
 ) `  x ) ,  ( ( 2nd `  a
 ) `  x ) >. (comp `  ( r `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
 ) )
 
Theoremreldmprds 12956 The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
 |- 
 Rel  dom  X_s
 
Theoremprdsex 12957 Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
 |-  ( ( S  e.  V  /\  R  e.  W )  ->  ( S X_s R )  e.  _V )
 
Theoremimasvalstrd 12958 An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )  u.  { <. (TopSet `  ndx ) ,  O >. ,  <. ( le ` 
 ndx ) ,  L >. ,  <. ( dist `  ndx ) ,  D >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   &    |-  ( ph  ->  .,  e.  P )   &    |-  ( ph  ->  O  e.  Q )   &    |-  ( ph  ->  L  e.  R )   &    |-  ( ph  ->  D  e.  A )   =>    |-  ( ph  ->  U Struct  <.
 1 , ; 1 2 >. )
 
Theoremprdsvalstrd 12959 Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x. 
 e.  Z )   &    |-  ( ph  ->  .,  e.  P )   &    |-  ( ph  ->  O  e.  Q )   &    |-  ( ph  ->  L  e.  R )   &    |-  ( ph  ->  D  e.  A )   &    |-  ( ph  ->  H  e.  T )   &    |-  ( ph  ->  .xb 
 e.  U )   =>    |-  ( ph  ->  ( ( { <. ( Base ` 
 ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )  u.  ( { <. (TopSet `  ndx ) ,  O >. , 
 <. ( le `  ndx ) ,  L >. , 
 <. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
 <. (comp `  ndx ) , 
 .xb  >. } ) ) Struct  <. 1 , ; 1 5 >. )
 
Theoremprdsvallem 12960* Lemma for prdsval 12961. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 12961, dependency on df-hom 12790 removed. (Revised by AV, 13-Oct-2024.)
 |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
  x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  e.  _V
 
Theoremprdsval 12961* Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  K  =  (
 Base `  S )   &    |-  ( ph  ->  dom  R  =  I )   &    |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x ) ) )   &    |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x ) ) ( g `  x ) ) ) ) )   &    |-  ( ph  ->  .X. 
 =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
  x ) ( .r `  ( R `
  x ) ) ( g `  x ) ) ) ) )   &    |-  ( ph  ->  .x. 
 =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
  x ) ) ( g `  x ) ) ) ) )   &    |-  ( ph  ->  .,  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x ) ) ( g `  x ) ) ) ) ) )   &    |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R ) ) )   &    |-  ( ph  ->  .<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x ) ) ( g `  x ) ) } )   &    |-  ( ph  ->  D  =  ( f  e.  B ,  g  e.  B  |->  sup (
 ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x ) ) ( g `  x ) ) )  u.  {
 0 } ) , 
 RR* ,  <  ) ) )   &    |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( ( f `  x ) ( Hom  `  ( R `  x ) ) ( g `
  x ) ) ) )   &    |-  ( ph  ->  .xb 
 =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
 ) H c ) ,  e  e.  ( H `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x ) ,  (
 ( 2nd `  a ) `  x ) >. (comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  P  =  ( ( { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )  u.  ( { <. (TopSet `  ndx ) ,  O >. , 
 <. ( le `  ndx ) ,  .<_  >. ,  <. (
 dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
 <. (comp `  ndx ) , 
 .xb  >. } ) ) )
 
Theoremprdsbaslemss 12962 Lemma for prdsbas 12964 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  A  =  ( E `
  P )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e.  NN   &    |-  ( ph  ->  T  e.  X )   &    |-  ( ph  ->  { <. ( E `
  ndx ) ,  T >. }  C_  P )   =>    |-  ( ph  ->  A  =  T )
 
Theoremprdssca 12963 Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   =>    |-  ( ph  ->  S  =  (Scalar `  P )
 )
 
Theoremprdsbas 12964* Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  dom 
 R  =  I )   =>    |-  ( ph  ->  B  =  X_ x  e.  I  (
 Base `  ( R `  x ) ) )
 
Theoremprdsplusg 12965* Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  dom 
 R  =  I )   &    |-  .+  =  ( +g  `  P )   =>    |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x ) ) ( g `
  x ) ) ) ) )
 
Theoremprdsmulr 12966* Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  P  =  ( S
 X_s
 R )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R  e.  W )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  dom 
 R  =  I )   &    |-  .x. 
 =  ( .r `  P )   =>    |-  ( ph  ->  .x.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
 `  ( R `  x ) ) ( g `  x ) ) ) ) )
 
Definitiondf-pws 12967* Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |- 
 ^s  =  ( r  e. 
 _V ,  i  e. 
 _V  |->  ( (Scalar `  r
 ) X_s ( i  X.  {
 r } ) ) )
 
6.1.4  Definition of the structure quotient
 
Syntaxcimas 12968 Image structure function.
 class  "s
 
Syntaxcqus 12969 Quotient structure function.
 class  /.s
 
Syntaxcxps 12970 Binary product structure function.
 class  X.s
 
Definitiondf-iimas 12971* Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly  f must either be injective or satisfy the well-definedness condition  f ( a )  =  f ( c )  /\  f ( b )  =  f ( d )  ->  f (
a  +  b )  =  f ( c  +  d ) for each relevant operation.

Note that although we call this an "image" by association to df-ima 4677, in order to keep the definition simple we consider only the case when the domain of  F is equal to the base set of  R. Other cases can be achieved by restricting 
F (with df-res 4676) and/or  R ( with df-iress 12697) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.)

 |-  "s  =  ( f  e.  _V ,  r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ { <. (
 Base `  ndx ) , 
 ran  f >. ,  <. (
 +g  `  ndx ) , 
 U_ p  e.  v  U_ q  e.  v  { <.
 <. ( f `  p ) ,  ( f `  q ) >. ,  (
 f `  ( p ( +g  `  r )
 q ) ) >. }
 >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( f `
  p ) ,  ( f `  q
 ) >. ,  ( f `
  ( p ( .r `  r ) q ) ) >. }
 >. } )
 
Definitiondf-qus 12972* Define a quotient ring (or quotient group), which is a special case of an image structure df-iimas 12971 where the image function is  x  |->  [ x ] e. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |- 
 /.s 
 =  ( r  e. 
 _V ,  e  e. 
 _V  |->  ( ( x  e.  ( Base `  r
 )  |->  [ x ] e
 )  "s  r ) )
 
Definitiondf-xps 12973* Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |- 
 X.s 
 =  ( r  e. 
 _V ,  s  e. 
 _V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s )  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )  "s  ( (Scalar `  r
 ) X_s { <. (/) ,  r >. , 
 <. 1o ,  s >. } ) ) )
 
Theoremimasex 12974 Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
 |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  e.  _V )
 
Theoremimasival 12975* Value of an image structure. The is a lemma for the theorems imasbas 12976, imasplusg 12977, and imasmulr 12978 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  ( ph  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .+  q ) ) >. } )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .X.  q ) ) >. } )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. } )
 
Theoremimasbas 12976 The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  U ) )
 
Theoremimasplusg 12977* The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  U )   =>    |-  ( ph  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .+  q ) ) >. } )
 
Theoremimasmulr 12978* The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <.
 ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )
 
Theoremf1ocpbllem 12979 Lemma for f1ocpbl 12980. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremf1ocpbl 12980 An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
 
Theoremf1ovscpbl 12981 An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
 )  ->  ( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
  ( A  .+  C ) ) ) )
 
Theoremf1olecpbl 12982 An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( A N B  <->  C N D ) ) )
 
Theoremimasaddfnlemg 12983* The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  .x.  e.  C )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasaddvallemg 12984* The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  .x.  e.  C )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `  X ) 
 .xb  ( F `  Y ) )  =  ( F `  ( X  .x.  Y ) ) )
 
Theoremimasaddflemg 12985* The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  .x.  e.  C )   &    |-  ( ( ph  /\  ( p  e.  V  /\  q  e.  V )
 )  ->  ( p  .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb  : ( B  X.  B ) --> B )
 
Theoremimasaddfn 12986* The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasaddval 12987* The value of an image structure's group operation. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  (
 ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `
  X )  .xb  ( F `  Y ) )  =  ( F `
  ( X  .x.  Y ) ) )
 
Theoremimasaddf 12988* The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb 
 : ( B  X.  B ) --> B )
 
Theoremimasmulfn 12989* The image structure's ring multiplication is a function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasmulval 12990* The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `  X ) 
 .xb  ( F `  Y ) )  =  ( F `  ( X  .x.  Y ) ) )
 
Theoremimasmulf 12991* The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   &    |-  ( ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p 
 .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb  : ( B  X.  B ) --> B )
 
Theoremqusval 12992* Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  ( F  "s  R )
 )
 
Theoremquslem 12993* The function in qusval 12992 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
 
Theoremqusex 12994 Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( R  e.  V  /\  .~  e.  W )  ->  ( R  /.s  .~  )  e.  _V )
 
Theoremqusin 12995 Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  (  .~  " V )  C_  V )   =>    |-  ( ph  ->  U  =  ( R  /.s  (  .~  i^i  ( V  X.  V ) ) ) )
 
Theoremqusbas 12996 Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  ( V /.  .~  )  =  ( Base `  U )
 )
 
Theoremdivsfval 12997* Value of the function in qusval 12992. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
Theoremdivsfvalg 12998* Value of the function in qusval 12992. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
Theoremercpbllemg 12999* Lemma for ercpbl 13000. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   =>    |-  ( ph  ->  (
 ( F `  A )  =  ( F `  B )  <->  A  .~  B ) )
 
Theoremercpbl 13000* Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  (
 ( ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  ( a  .+  b )  e.  V )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15755
  Copyright terms: Public domain < Previous  Next >