![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-rq | Unicode version |
Description: Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by Jim Kingdon, 20-Sep-2019.) |
Ref | Expression |
---|---|
df-rq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crq 7283 |
. 2
![]() ![]() | |
2 | vx |
. . . . . 6
![]() ![]() | |
3 | 2 | cv 1352 |
. . . . 5
![]() ![]() |
4 | cnq 7279 |
. . . . 5
![]() ![]() | |
5 | 3, 4 | wcel 2148 |
. . . 4
![]() ![]() ![]() ![]() |
6 | vy |
. . . . . 6
![]() ![]() | |
7 | 6 | cv 1352 |
. . . . 5
![]() ![]() |
8 | 7, 4 | wcel 2148 |
. . . 4
![]() ![]() ![]() ![]() |
9 | cmq 7282 |
. . . . . 6
![]() ![]() | |
10 | 3, 7, 9 | co 5875 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | c1q 7280 |
. . . . 5
![]() ![]() | |
12 | 10, 11 | wceq 1353 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 5, 8, 12 | w3a 978 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13, 2, 6 | copab 4064 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1353 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: recmulnqg 7390 |
Copyright terms: Public domain | W3C validator |