ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-rq Unicode version

Definition df-rq 7314
Description: Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
df-rq  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) }
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-rq
StepHypRef Expression
1 crq 7246 . 2  class  *Q
2 vx . . . . . 6  setvar  x
32cv 1347 . . . . 5  class  x
4 cnq 7242 . . . . 5  class  Q.
53, 4wcel 2141 . . . 4  wff  x  e. 
Q.
6 vy . . . . . 6  setvar  y
76cv 1347 . . . . 5  class  y
87, 4wcel 2141 . . . 4  wff  y  e. 
Q.
9 cmq 7245 . . . . . 6  class  .Q
103, 7, 9co 5853 . . . . 5  class  ( x  .Q  y )
11 c1q 7243 . . . . 5  class  1Q
1210, 11wceq 1348 . . . 4  wff  ( x  .Q  y )  =  1Q
135, 8, 12w3a 973 . . 3  wff  ( x  e.  Q.  /\  y  e.  Q.  /\  ( x  .Q  y )  =  1Q )
1413, 2, 6copab 4049 . 2  class  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }
151, 14wceq 1348 1  wff  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) }
Colors of variables: wff set class
This definition is referenced by:  recmulnqg  7353
  Copyright terms: Public domain W3C validator