HomeHome Intuitionistic Logic Explorer
Theorem List (p. 74 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7301-7400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremprarloclemlt 7301 Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e. 
 P.  /\  A  e.  L  /\  P  e.  Q. ) )  /\  y  e. 
 om )  ->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) )
 
Theoremprarloclemlo 7302* Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e. 
 P.  /\  A  e.  L  /\  P  e.  Q. ) )  /\  y  e. 
 om )  ->  (
 ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ] 
 ~Q  .Q  P )
 )  e.  L  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  suc 
 X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) 
 ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) ) )
 
Theoremprarloclemup 7303 Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e. 
 P.  /\  A  e.  L  /\  P  e.  Q. ) )  /\  y  e. 
 om )  ->  (
 ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  suc 
 X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) 
 ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) ) )
 
Theoremprarloclem3step 7304* Induction step for prarloclem3 7305. (Contributed by Jim Kingdon, 9-Nov-2019.)
 |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e. 
 P.  /\  A  e.  L  /\  P  e.  Q. ) )  /\  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  suc  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  (
 ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
 
Theoremprarloclem3 7305* Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 27-Oct-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L ) 
 /\  ( X  e.  om 
 /\  P  e.  Q. )  /\  E. y  e. 
 om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. j  e.  om  (
 ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ] 
 ~Q  .Q  P )
 )  e.  U ) )
 
Theoremprarloclem4 7306* A slight rearrangement of prarloclem3 7305. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 4-Nov-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L ) 
 /\  P  e.  Q. )  ->  ( E. x  e.  om  E. y  e. 
 om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
 
Theoremprarloclemn 7307* Subtracting two from a positive integer. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |-  ( ( N  e.  N. 
 /\  1o  <N  N ) 
 ->  E. x  e.  om  ( 2o  +o  x )  =  N )
 
Theoremprarloclem5 7308* A substitution of zero for  y and  N minus two for  x. Lemma for prarloc 7311. (Contributed by Jim Kingdon, 4-Nov-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L ) 
 /\  ( N  e.  N. 
 /\  P  e.  Q.  /\ 
 1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) 
 ->  E. x  e.  om  E. y  e.  om  (
 ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
 
Theoremprarloclem 7309* A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 
A to  A  +Q  ( N  .Q  P ) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L ) 
 /\  ( N  e.  N. 
 /\  P  e.  Q.  /\ 
 1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) 
 ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ] 
 ~Q  .Q  P )
 )  e.  U ) )
 
Theoremprarloclemcalc 7310 Some calculations for prarloc 7311. (Contributed by Jim Kingdon, 26-Oct-2019.)
 |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ] 
 ~Q  .Q  Q )
 ) )  /\  (
 ( Q  e.  Q.  /\  ( Q  +Q  Q )  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
 ) )  ->  B  <Q  ( A  +Q  P ) )
 
Theoremprarloc 7311* A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance  P, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7312 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

 |-  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
 
Theoremprarloc2 7312* A Dedekind cut is arithmetically located. This is a variation of prarloc 7311 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance  P, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  ->  E. a  e.  L  ( a  +Q  P )  e.  U )
 
Theoremltrelpr 7313 Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
 |- 
 <P  C_  ( P.  X.  P. )
 
Theoremltdfpr 7314* More convenient form of df-iltp 7278. (Contributed by Jim Kingdon, 15-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  <P  B  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )
 
Theoremgenpdflem 7315* Simplification of upper or lower cut expression. Lemma for genpdf 7316. (Contributed by Jim Kingdon, 30-Sep-2019.)
 |-  ( ( ph  /\  r  e.  A )  ->  r  e.  Q. )   &    |-  ( ( ph  /\  s  e.  B ) 
 ->  s  e.  Q. )   =>    |-  ( ph  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  A  /\  s  e.  B  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  A  E. s  e.  B  q  =  ( r G s ) }
 )
 
Theoremgenpdf 7316* Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e. 
 Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v )  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v )  /\  q  =  ( r G s ) ) } >. )   =>    |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e. 
 Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v ) q  =  ( r G s ) } >. )
 
Theoremgenipv 7317* Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  = 
 <. { q  e.  Q.  |  E. r  e.  ( 1st `  A ) E. s  e.  ( 1st `  B ) q  =  ( r G s ) } ,  {
 q  e.  Q.  |  E. r  e.  ( 2nd `  A ) E. s  e.  ( 2nd `  B ) q  =  ( r G s ) } >. )
 
Theoremgenplt2i 7318* Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
 |-  ( ( x  e. 
 Q.  /\  y  e.  Q. 
 /\  z  e.  Q. )  ->  ( x  <Q  y  <-> 
 ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   =>    |-  ( ( A  <Q  B 
 /\  C  <Q  D ) 
 ->  ( A G C )  <Q  ( B G D ) )
 
Theoremgenpelxp 7319* Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A F B )  e.  ( ~P Q.  X.  ~P Q. ) )
 
Theoremgenpelvl 7320* Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
 
Theoremgenpelvu 7321* Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
 
Theoremgenpprecll 7322* Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  (
 ( C  e.  ( 1st `  A )  /\  D  e.  ( 1st `  B ) )  ->  ( C G D )  e.  ( 1st `  ( A F B ) ) ) )
 
Theoremgenppreclu 7323* Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  (
 ( C  e.  ( 2nd `  A )  /\  D  e.  ( 2nd `  B ) )  ->  ( C G D )  e.  ( 2nd `  ( A F B ) ) ) )
 
Theoremgenipdm 7324* Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  dom  F  =  ( P.  X.  P. )
 
Theoremgenpml 7325* The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
 
Theoremgenpmu 7326* The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 2nd `  ( A F B ) ) )
 
Theoremgenpcdl 7327* Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) )  /\  x  e.  Q. )  ->  ( x  <Q  ( g G h )  ->  x  e.  ( 1st `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( f  e.  ( 1st `  ( A F B ) ) 
 ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
 
Theoremgenpcuu 7328* Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) ) 
 ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
 
Theoremgenprndl 7329* The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  y  <->  ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) ) 
 /\  x  e.  Q. )  ->  ( x  <Q  ( g G h ) 
 ->  x  e.  ( 1st `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A F B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A F B ) ) ) ) )
 
Theoremgenprndu 7330* The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  y  <->  ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) ) 
 /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x 
 ->  x  e.  ( 2nd `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
 
Theoremgenpdisj 7331* The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  y  <->  ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
 
Theoremgenpassl 7332* Associativity of lower cuts. Lemma for genpassg 7334. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  dom  F  =  ( P.  X.  P. )   &    |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  (
 f F g )  e.  P. )   &    |-  (
 ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  ( ( f G g ) G h )  =  ( f G ( g G h ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  (
 ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) ) )
 
Theoremgenpassu 7333* Associativity of upper cuts. Lemma for genpassg 7334. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  dom  F  =  ( P.  X.  P. )   &    |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  (
 f F g )  e.  P. )   &    |-  (
 ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  ( ( f G g ) G h )  =  ( f G ( g G h ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  (
 ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) )
 
Theoremgenpassg 7334* Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  dom  F  =  ( P.  X.  P. )   &    |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  (
 f F g )  e.  P. )   &    |-  (
 ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  ( ( f G g ) G h )  =  ( f G ( g G h ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
 
Theoremaddnqprllem 7335 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  L ) 
 /\  X  e.  Q. )  ->  ( X  <Q  S 
 ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  L ) )
 
Theoremaddnqprulem 7336 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U ) 
 /\  X  e.  Q. )  ->  ( S  <Q  X 
 ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
 
Theoremaddnqprl 7337 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H ) 
 ->  X  e.  ( 1st `  ( A  +P.  B ) ) ) )
 
Theoremaddnqpru 7338 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X 
 ->  X  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlemlt 7339 Lemma for addlocpr 7344. The  Q  <Q  ( D  +Q  E ) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  ->  Q  e.  ( 1st `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlemeqgt 7340 Lemma for addlocpr 7344. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( U  +Q  T )  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P ) ) )
 
Theoremaddlocprlemeq 7341 Lemma for addlocpr 7344. The  Q  =  ( D  +Q  E ) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlemgt 7342 Lemma for addlocpr 7344. The  ( D  +Q  E
)  <Q  Q case. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  (
 ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlem 7343 Lemma for addlocpr 7344. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocpr 7344* Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7311 to both  A and  B, and uses nqtri3or 7204 rather than prloc 7299 to decide whether  q is too big to be in the lower cut of  A  +P.  B (and deduce that if it is, then  r must be in the upper cut). What the two proofs have in common is that they take the difference between  q and  r to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
 
Theoremaddclpr 7345 Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  e.  P. )
 
Theoremplpvlu 7346* Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  +Q  z
 ) } >. )
 
Theoremmpvlu 7347* Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
 ) } >. )
 
Theoremdmplp 7348 Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.)
 |- 
 dom  +P.  =  ( P. 
 X.  P. )
 
Theoremdmmp 7349 Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
 |- 
 dom  .P.  =  ( P. 
 X.  P. )
 
Theoremnqprm 7350* A cut produced from a rational is inhabited. Lemma for nqprlu 7355. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  ( E. q  e. 
 Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x } ) )
 
Theoremnqprrnd 7351* A cut produced from a rational is rounded. Lemma for nqprlu 7355. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  ( A. q  e. 
 Q.  ( q  e. 
 { x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
 ) )  /\  A. r  e.  Q.  (
 r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
 q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
 
Theoremnqprdisj 7352* A cut produced from a rational is disjoint. Lemma for nqprlu 7355. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e. 
 { x  |  A  <Q  x } ) )
 
Theoremnqprloc 7353* A cut produced from a rational is located. Lemma for nqprlu 7355. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
 ) ) )
 
Theoremnqprxx 7354* The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  -> 
 <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
 
Theoremnqprlu 7355* The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
 |-  ( A  e.  Q.  -> 
 <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
 
Theoremrecnnpr 7356* The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
 |-  ( A  e.  N.  -> 
 <. { l  |  l 
 <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  u } >.  e. 
 P. )
 
Theoremltnqex 7357 The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |- 
 { x  |  x  <Q  A }  e.  _V
 
Theoremgtnqex 7358 The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |- 
 { x  |  A  <Q  x }  e.  _V
 
Theoremnqprl 7359* Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by 
<P. (Contributed by Jim Kingdon, 8-Jul-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
 
Theoremnqpru 7360* Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by 
<P. (Contributed by Jim Kingdon, 29-Nov-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <->  B 
 <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
 
Theoremnnprlu 7361* The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  N.  -> 
 <. { l  |  l 
 <Q  [ <. A ,  1o >. ]  ~Q  } ,  { u  |  [ <. A ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
 
Theorem1pr 7362 The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |- 
 1P  e.  P.
 
Theorem1prl 7363 The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( 1st `  1P )  =  { x  |  x  <Q  1Q }
 
Theorem1pru 7364 The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( 2nd `  1P )  =  { x  |  1Q  <Q  x }
 
Theoremaddnqprlemrl 7365* Lemma for addnqpr 7369. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. ) )
 
Theoremaddnqprlemru 7366* Lemma for addnqpr 7369. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. ) )
 
Theoremaddnqprlemfl 7367* Lemma for addnqpr 7369. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremaddnqprlemfu 7368* Lemma for addnqpr 7369. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremaddnqpr 7369* Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddnqpr1 7370* Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 7369. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  Q.  -> 
 <. { l  |  l 
 <Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  1P ) )
 
Theoremappdivnq 7371* Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where  A and  B are positive, as well as  C). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C ) 
 <Q  B ) )
 
Theoremappdiv0nq 7372* Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7371 in which  A is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( B  e.  Q. 
 /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C ) 
 <Q  B )
 
Theoremprmuloclemcalc 7373 Calculations for prmuloc 7374. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ph  ->  R  <Q  U )   &    |-  ( ph  ->  U 
 <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  ( A  +Q  X )  =  B )   &    |-  ( ph  ->  ( P  .Q  B )  <Q  ( R  .Q  X ) )   &    |-  ( ph  ->  A  e.  Q. )   &    |-  ( ph  ->  B  e.  Q. )   &    |-  ( ph  ->  D  e.  Q. )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  X  e.  Q. )   =>    |-  ( ph  ->  ( U  .Q  A ) 
 <Q  ( D  .Q  B ) )
 
Theoremprmuloc 7374* Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e.  Q.  (
 d  e.  L  /\  u  e.  U  /\  ( u  .Q  A ) 
 <Q  ( d  .Q  B ) ) )
 
Theoremprmuloc2 7375* Positive reals are multiplicatively located. This is a variation of prmuloc 7374 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U )
 
Theoremmulnqprl 7376 Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H ) 
 ->  X  e.  ( 1st `  ( A  .P.  B ) ) ) )
 
Theoremmulnqpru 7377 Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X 
 ->  X  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocprlem 7378 Calculations for mullocpr 7379. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. ) )   &    |-  ( ph  ->  ( U  .Q  Q )  <Q  ( E  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) )  <Q  ( T  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) )  <Q  ( D  .Q  R ) )   &    |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )   &    |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
 )   &    |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )   &    |-  ( ph  ->  ( E  e.  Q. 
 /\  T  e.  Q. ) )   =>    |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocpr 7379* Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
 
Theoremmulclpr 7380 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  e.  P. )
 
Theoremmulnqprlemrl 7381* Lemma for mulnqpr 7385. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemru 7382* Lemma for mulnqpr 7385. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemfl 7383* Lemma for mulnqpr 7385. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqprlemfu 7384* Lemma for mulnqpr 7385. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqpr 7385* Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddcomprg 7386 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  =  ( B 
 +P.  A ) )
 
Theoremaddassprg 7387 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  +P.  C )  =  ( A  +P.  ( B  +P.  C ) ) )
 
Theoremmulcomprg 7388 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  ( B 
 .P.  A ) )
 
Theoremmulassprg 7389 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) ) )
 
Theoremdistrlem1prl 7390 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem1pru 7391 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem4prl 7392* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem4pru 7393* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5prl 7394 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5pru 7395 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrprg 7396 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A 
 .P.  B )  +P.  ( A  .P.  C ) ) )
 
Theoremltprordil 7397 If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
 |-  ( A  <P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
 
Theorem1idprl 7398 Lemma for 1idpr 7400. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
 
Theorem1idpru 7399 Lemma for 1idpr 7400. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )
 
Theorem1idpr 7400 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
 |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >