HomeHome Intuitionistic Logic Explorer
Theorem List (p. 74 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7301-7400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremenqex 7301 The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
 |- 
 ~Q  e.  _V
 
Theoremenqdc 7302 The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )
 
Theoremenqdc1 7303 The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )
 
Theoremnqex 7304 The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 Q.  e.  _V
 
Theorem0nnq 7305 The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 -.  (/)  e.  Q.
 
Theoremltrelnq 7306 Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 <Q  C_  ( Q.  X.  Q. )
 
Theorem1nq 7307 The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.)
 |- 
 1Q  e.  Q.
 
Theoremaddcmpblnq 7308 Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
 )  /\  ( ( F  e.  N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R ) ) 
 ->  <. ( ( A  .N  G )  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q 
 <. ( ( C  .N  S )  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. ) )
 
Theoremmulcmpblnq 7309 Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
 )  /\  ( ( F  e.  N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R ) ) 
 ->  <. ( A  .N  F ) ,  ( B  .N  G ) >.  ~Q 
 <. ( C  .N  R ) ,  ( D  .N  S ) >. ) )
 
Theoremaddpipqqslem 7310 Lemma for addpipqqs 7311. (Contributed by Jim Kingdon, 11-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  <. ( ( A  .N  D )  +N  ( B  .N  C ) ) ,  ( B  .N  D ) >.  e.  ( N.  X.  N. ) )
 
Theoremaddpipqqs 7311 Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ]  ~Q  +Q  [ <. C ,  D >. ] 
 ~Q  )  =  [ <. ( ( A  .N  D )  +N  ( B  .N  C ) ) ,  ( B  .N  D ) >. ]  ~Q  )
 
Theoremmulpipq2 7312 Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
 |-  ( ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N. 
 X.  N. ) )  ->  ( A  .pQ  B )  =  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
 >. )
 
Theoremmulpipq 7313 Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )
 
Theoremmulpipqqs 7314 Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ]  ~Q  .Q  [ <. C ,  D >. ] 
 ~Q  )  =  [ <. ( A  .N  C ) ,  ( B  .N  D ) >. ]  ~Q  )
 
Theoremordpipqqs 7315 Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ]  ~Q  <Q  [ <. C ,  D >. ]  ~Q  <->  ( A  .N  D )  <N  ( B  .N  C ) ) )
 
Theoremaddclnq 7316 Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  +Q  B )  e.  Q. )
 
Theoremmulclnq 7317 Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  .Q  B )  e.  Q. )
 
Theoremdmaddpqlem 7318* Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7320. (Contributed by Jim Kingdon, 15-Sep-2019.)
 |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
 
Theoremnqpi 7319* Decomposition of a positive fraction into numerator and denominator. Similar to dmaddpqlem 7318 but also shows that the numerator and denominator are positive integers. (Contributed by Jim Kingdon, 20-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. w E. v
 ( ( w  e. 
 N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ]  ~Q  ) )
 
Theoremdmaddpq 7320 Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.)
 |- 
 dom  +Q  =  ( Q.  X.  Q. )
 
Theoremdmmulpq 7321 Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.)
 |- 
 dom  .Q  =  ( Q.  X.  Q. )
 
Theoremaddcomnqg 7322 Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  +Q  B )  =  ( B  +Q  A ) )
 
Theoremaddassnqg 7323 Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  +Q  B )  +Q  C )  =  ( A  +Q  ( B  +Q  C ) ) )
 
Theoremmulcomnqg 7324 Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  .Q  B )  =  ( B  .Q  A ) )
 
Theoremmulassnqg 7325 Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  .Q  B )  .Q  C )  =  ( A  .Q  ( B  .Q  C ) ) )
 
Theoremmulcanenq 7326 Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  -> 
 <. ( A  .N  B ) ,  ( A  .N  C ) >.  ~Q  <. B ,  C >. )
 
Theoremmulcanenqec 7327 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  [ <. ( A  .N  B ) ,  ( A  .N  C ) >. ] 
 ~Q  =  [ <. B ,  C >. ]  ~Q  )
 
Theoremdistrnqg 7328 Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) ) )
 
Theorem1qec 7329 The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.)
 |-  ( A  e.  N.  ->  1Q  =  [ <. A ,  A >. ]  ~Q  )
 
Theoremmulidnq 7330 Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.)
 |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
 
Theoremrecexnq 7331* Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. y ( y  e.  Q.  /\  ( A  .Q  y )  =  1Q ) )
 
Theoremrecmulnqg 7332 Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <->  ( A  .Q  B )  =  1Q ) )
 
Theoremrecclnq 7333 Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( A  e.  Q.  ->  ( *Q `  A )  e.  Q. )
 
Theoremrecidnq 7334 A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
 |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
 
Theoremrecrecnq 7335 Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.)
 |-  ( A  e.  Q.  ->  ( *Q `  ( *Q `  A ) )  =  A )
 
Theoremrec1nq 7336 Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.)
 |-  ( *Q `  1Q )  =  1Q
 
Theoremnqtri3or 7337 Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A )
 )
 
Theoremltdcnq 7338 Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  -> DECID  A  <Q  B )
 
Theoremltsonq 7339 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
 |- 
 <Q  Or  Q.
 
Theoremnqtric 7340 Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  -.  ( A  =  B  \/  B  <Q  A )
 ) )
 
Theoremltanqg 7341 Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
 
Theoremltmnqg 7342 Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
 
Theoremltanqi 7343 Ordering property of addition for positive fractions. One direction of ltanqg 7341. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  ( C  +Q  A )  <Q  ( C  +Q  B ) )
 
Theoremltmnqi 7344 Ordering property of multiplication for positive fractions. One direction of ltmnqg 7342. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  ( C  .Q  A )  <Q  ( C  .Q  B ) )
 
Theoremlt2addnq 7345 Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. ) )  ->  ( ( A  <Q  B 
 /\  C  <Q  D ) 
 ->  ( A  +Q  C )  <Q  ( B  +Q  D ) ) )
 
Theoremlt2mulnq 7346 Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. ) )  ->  ( ( A  <Q  B 
 /\  C  <Q  D ) 
 ->  ( A  .Q  C )  <Q  ( B  .Q  D ) ) )
 
Theorem1lt2nq 7347 One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |- 
 1Q  <Q  ( 1Q  +Q  1Q )
 
Theoremltaddnq 7348 The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )
 
Theoremltexnqq 7349* Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  E. x  e.  Q.  ( A  +Q  x )  =  B )
 )
 
Theoremltexnqi 7350* Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.)
 |-  ( A  <Q  B  ->  E. x  e.  Q.  ( A  +Q  x )  =  B )
 
Theoremhalfnqq 7351* One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  A )
 
Theoremhalfnq 7352* One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( A  e.  Q.  ->  E. x ( x  +Q  x )  =  A )
 
Theoremnsmallnqq 7353* There is no smallest positive fraction. (Contributed by Jim Kingdon, 24-Sep-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  Q.  x  <Q  A )
 
Theoremnsmallnq 7354* There is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( A  e.  Q.  ->  E. x  x  <Q  A )
 
Theoremsubhalfnqq 7355* There is a number which is less than half of any positive fraction. The case where  A is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7351). (Contributed by Jim Kingdon, 25-Nov-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  A )
 
Theoremltbtwnnqq 7356* There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
 |-  ( A  <Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
 
Theoremltbtwnnq 7357* There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
 |-  ( A  <Q  B  <->  E. x ( A 
 <Q  x  /\  x  <Q  B ) )
 
Theoremarchnqq 7358* For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
 |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
 
Theoremprarloclemarch 7359* A version of the Archimedean property. This variation is "stronger" than archnqq 7358 in the sense that we provide an integer which is larger than a given rational  A even after being multiplied by a second rational  B. (Contributed by Jim Kingdon, 30-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
 
Theoremprarloclemarch2 7360* Like prarloclemarch 7359 but the integer must be at least two, and there is also  B added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7444. (Contributed by Jim Kingdon, 25-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
 
Theoremltrnqg 7361 Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7362. (Contributed by Jim Kingdon, 29-Dec-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <-> 
 ( *Q `  B )  <Q  ( *Q `  A ) ) )
 
Theoremltrnqi 7362 Ordering property of reciprocal for positive fractions. For the converse, see ltrnqg 7361. (Contributed by Jim Kingdon, 24-Sep-2019.)
 |-  ( A  <Q  B  ->  ( *Q `  B ) 
 <Q  ( *Q `  A ) )
 
Theoremnnnq 7363 The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  N.  ->  [ <. A ,  1o >. ]  ~Q  e.  Q. )
 
Theoremltnnnq 7364 Ordering of positive integers via 
<N or  <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [ <. B ,  1o >. ]  ~Q  )
 )
 
Definitiondf-enq0 7365* Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v ) ) ) }
 
Definitiondf-nq0 7366 Define class of nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- Q0  =  ( ( om  X.  N. ) /. ~Q0  )
 
Definitiondf-0nq0 7367 Define nonnegative fraction constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
 
Definitiondf-plq0 7368* Define addition on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- +Q0  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
 v  .o  u )
 ) ,  ( v  .o  f ) >. ] ~Q0  )
 ) }
 
Definitiondf-mq0 7369* Define multiplication on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.)
 |- ·Q0  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
 
Theoremdfmq0qs 7370* Multiplication on nonnegative fractions. This definition is similar to df-mq0 7369 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.)
 |- ·Q0  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  (
 ( om  X.  N. ) /. ~Q0  ) 
 /\  y  e.  (
 ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
 
Theoremdfplq0qs 7371* Addition on nonnegative fractions. This definition is similar to df-plq0 7368 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.)
 |- +Q0  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  (
 ( om  X.  N. ) /. ~Q0  ) 
 /\  y  e.  (
 ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  f )  +o  (
 v  .o  u )
 ) ,  ( v  .o  f ) >. ] ~Q0  )
 ) }
 
Theoremenq0enq 7372 Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.)
 |- 
 ~Q  =  ( ~Q0  i^i  ( ( N. 
 X.  N. )  X.  ( N.  X.  N. ) ) )
 
Theoremenq0sym 7373 The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7376. (Contributed by Jim Kingdon, 14-Nov-2019.)
 |-  ( f ~Q0  g  ->  g ~Q0  f )
 
Theoremenq0ref 7374 The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7376. (Contributed by Jim Kingdon, 14-Nov-2019.)
 |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
 
Theoremenq0tr 7375 The equivalence relation for nonnegative fractions is transitive. Lemma for enq0er 7376. (Contributed by Jim Kingdon, 14-Nov-2019.)
 |-  ( ( f ~Q0  g  /\  g ~Q0  h )  ->  f ~Q0  h )
 
Theoremenq0er 7376 The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
 |- ~Q0  Er  ( om  X.  N. )
 
Theoremenq0breq 7377 Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( <. A ,  B >. ~Q0  <. C ,  D >.  <->  ( A  .o  D )  =  ( B  .o  C ) ) )
 
Theoremenq0eceq 7378 Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  <->  ( A  .o  D )  =  ( B  .o  C ) ) )
 
Theoremnqnq0pi 7379 A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )
 
Theoremenq0ex 7380 The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
 |- ~Q0  e.  _V
 
Theoremnq0ex 7381 The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
 |- Q0  e.  _V
 
Theoremnqnq0 7382 A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
 |- 
 Q.  C_ Q0
 
Theoremnq0nn 7383* Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
 |-  ( A  e. Q0  ->  E. w E. v
 ( ( w  e. 
 om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  ) )
 
Theoremaddcmpblnq0 7384 Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
 )  /\  ( ( F  e.  om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R ) ) 
 ->  <. ( ( A  .o  G )  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0  <. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. ) )
 
Theoremmulcmpblnq0 7385 Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
 |-  ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
 )  /\  ( ( F  e.  om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R ) ) 
 ->  <. ( A  .o  F ) ,  ( B  .o  G ) >. ~Q0  <. ( C  .o  R ) ,  ( D  .o  S ) >. ) )
 
Theoremmulcanenq0ec 7386 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  om  /\  C  e.  N. )  ->  [ <. ( A  .o  B ) ,  ( A  .o  C ) >. ] ~Q0  =  [ <. B ,  C >. ] ~Q0  )
 
Theoremnnnq0lem1 7387* Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7390 and mulnnnq0 7391. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( ( ( A  e.  ( ( om  X. 
 N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
 ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  ( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
 )  /\  ( ( u  e.  om  /\  t  e.  N. )  /\  (
 g  e.  om  /\  h  e.  N. )
 ) )  /\  (
 ( w  .o  f
 )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) ) ) )
 
Theoremaddnq0mo 7388* There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
 v  .o  u )
 ) ,  ( v  .o  t ) >. ] ~Q0  )
 )
 
Theoremmulnq0mo 7389* There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
 |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) )
 
Theoremaddnnnq0 7390 Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )
 
Theoremmulnnnq0 7391 Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
 |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ] ~Q0 ·Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  )
 
Theoremaddclnq0 7392 Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0 ) 
 ->  ( A +Q0  B )  e. Q0 )
 
Theoremmulclnq0 7393 Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0 ) 
 ->  ( A ·Q0  B )  e. Q0 )
 
Theoremnqpnq0nq 7394 A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )
 
Theoremnqnq0a 7395 Addition of positive fractions is equal with  +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  +Q  B )  =  ( A +Q0  B ) )
 
Theoremnqnq0m 7396 Multiplication of positive fractions is equal with  .Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  .Q  B )  =  ( A ·Q0  B ) )
 
Theoremnq0m0r 7397 Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |-  ( A  e. Q0  ->  (0Q0 ·Q0  A )  = 0Q0 )
 
Theoremnq0a0 7398 Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
 |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
 
Theoremnnanq0 7399 Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
 |-  ( ( N  e.  om 
 /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  ) )
 
Theoremdistrnq0 7400 Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.)
 |-  ( ( A  e. Q0  /\  B  e. Q0  /\  C  e. Q0 )  ->  ( A ·Q0  ( B +Q0  C ) )  =  ( ( A ·Q0  B ) +Q0  ( A ·Q0  C ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >