HomeHome Intuitionistic Logic Explorer
Theorem List (p. 74 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7301-7400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremenomnilem 7301 Lemma for enomni 7302. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  ~~  B  ->  ( A  e. Omni  ->  B  e. Omni ) )
 
Theoremenomni 7302 Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either  om  e. Omni or  NN0  e. Omni. The former is a better match to conventional notation in the sense that df2o3 6574 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  ~~  B  ->  ( A  e. Omni  <->  B  e. Omni ) )
 
Theoremfinomni 7303 A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
 |-  ( A  e.  Fin  ->  A  e. Omni )
 
Theoremexmidomniim 7304 Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7305. (Contributed by Jim Kingdon, 29-Jun-2022.)
 |-  (EXMID 
 ->  A. x  x  e. Omni
 )
 
Theoremexmidomni 7305 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
 |-  (EXMID  <->  A. x  x  e. Omni )
 
Theoremexmidlpo 7306 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
 |-  (EXMID 
 ->  om  e. Omni )
 
Theoremfodjuomnilemdc 7307* Lemma for fodjuomni 7312. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   =>    |-  ( ( ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
 ) )
 
Theoremfodjuf 7308* Lemma for fodjuomni 7312 and fodjumkv 7323. Domain and range of  P. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  O  e.  V )   =>    |-  ( ph  ->  P  e.  ( 2o  ^m  O ) )
 
Theoremfodjum 7309* Lemma for fodjuomni 7312 and fodjumkv 7323. A condition which shows that  A is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )   =>    |-  ( ph  ->  E. x  x  e.  A )
 
Theoremfodju0 7310* Lemma for fodjuomni 7312 and fodjumkv 7323. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )   =>    |-  ( ph  ->  A  =  (/) )
 
Theoremfodjuomnilemres 7311* Lemma for fodjuomni 7312. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
 |-  ( ph  ->  O  e. Omni )   &    |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   =>    |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
 
Theoremfodjuomni 7312* A condition which ensures  A is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
 |-  ( ph  ->  O  e. Omni )   &    |-  ( ph  ->  F : O -onto-> ( A B ) )   =>    |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
 
Theoremctssexmid 7313* The decidability condition in ctssdc 7276 is needed. More specifically, ctssdc 7276 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( ( y  C_  om 
 /\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )   &    |-  om  e. Omni   =>    |-  ( ph  \/  -.  ph )
 
2.6.39  Markov's principle
 
Syntaxcmarkov 7314 Extend class definition to include the class of Markov sets.
 class Markov
 
Definitiondf-markov 7315* A Markov set is one where if a predicate (here represented by a function  f) on that set does not hold (where hold means is equal to  1o) for all elements, then there exists an element where it fails (is equal to  (/)). Generalization of definition 2.5 of [Pierik], p. 9.

In particular,  om  e. Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -. 
 A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
 
Theoremismkv 7316* The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
 
Theoremismkvmap 7317* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
 
Theoremismkvnex 7318* The predicate of being Markov stated in terms of double negation and comparison with  1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )
 ) )
 
Theoremomnimkv 7319 An omniscient set is Markov. In particular, the case where  A is  om means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e. Omni  ->  A  e. Markov )
 
Theoremexmidmp 7320 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
 |-  (EXMID 
 ->  om  e. Markov )
 
Theoremmkvprop 7321* Markov's Principle expressed in terms of propositions (or more precisely, the  A  =  om case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
 |-  ( ( A  e. Markov  /\ 
 A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  E. n  e.  A  ph )
 
Theoremfodjumkvlemres 7322* Lemma for fodjumkv 7323. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  M  e. Markov )   &    |-  ( ph  ->  F : M -onto-> ( A B ) )   &    |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   =>    |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
 )
 
Theoremfodjumkv 7323* A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  M  e. Markov )   &    |-  ( ph  ->  F : M -onto-> ( A B ) )   =>    |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
 )
 
Theoremenmkvlem 7324 Lemma for enmkv 7325. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  ->  B  e. Markov ) )
 
Theoremenmkv 7325 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6574 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
 
2.6.40  Weakly omniscient sets
 
Syntaxcwomni 7326 Extend class definition to include the class of weakly omniscient sets.
 class WOmni
 
Definitiondf-womni 7327* A weakly omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular,  om  e. WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x )  =  1o ) }
 
Theoremiswomni 7328* The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
 
Theoremiswomnimap 7329* The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1o ) )
 
Theoremomniwomnimkv 7330 A set is omniscient if and only if it is weakly omniscient and Markov. The case  A  =  om says that LPO  <-> WLPO  /\ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e. Omni  <->  ( A  e. WOmni  /\  A  e. Markov ) )
 
Theoremlpowlpo 7331 LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7330. There is an analogue in terms of analytic omniscience principles at tridceq 16383. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( om  e. Omni  ->  om  e. WOmni )
 
Theoremenwomnilem 7332 Lemma for enwomni 7333. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni ) )
 
Theoremenwomni 7333 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either  om  e. WOmni or  NN0  e. WOmni. The former is a better match to conventional notation in the sense that df2o3 6574 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )
 
Theoremnninfdcinf 7334* The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( ph  ->  om  e. WOmni )   &    |-  ( ph  ->  N  e. )   =>    |-  ( ph  -> DECID  N  =  ( i  e.  om  |->  1o ) )
 
Theoremnninfwlporlemd 7335* Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   =>    |-  ( ph  ->  ( X  =  Y  <->  D  =  (
 i  e.  om  |->  1o ) ) )
 
Theoremnninfwlporlem 7336* Lemma for nninfwlpor 7337. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   &    |-  ( ph  ->  om  e. WOmni )   =>    |-  ( ph  -> DECID  X  =  Y )
 
Theoremnninfwlpor 7337* The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
 
Theoremnninfwlpoimlemg 7338* Lemma for nninfwlpoim 7342. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  G  e. )
 
Theoremnninfwlpoimlemginf 7339* Lemma for nninfwlpoim 7342. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
 
Theoremnninfwlpoimlemdc 7340* Lemma for nninfwlpoim 7342. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
Theoremnninfinfwlpolem 7341* Lemma for nninfinfwlpo 7343. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e. DECID  x  =  ( i  e.  om  |->  1o ) )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
Theoremnninfwlpoim 7342* Decidable equality for ℕ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  om  e. WOmni )
 
Theoremnninfinfwlpo 7343* The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7296). (Contributed by Jim Kingdon, 25-Nov-2025.)
 |-  ( A. x  e. DECID  x  =  (
 i  e.  om  |->  1o )  <->  om  e. WOmni )
 
Theoremnninfwlpo 7344* Decidability of equality for ℕ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
 
2.6.41  Cardinal numbers
 
Syntaxccrd 7345 Extend class definition to include the cardinal size function.
 class  card
 
Syntaxwacn 7346 The axiom of choice for limited-length sequences.
 class AC  A
 
Definitiondf-card 7347* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
 |- 
 card  =  ( x  e.  _V  |->  |^| { y  e. 
 On  |  y  ~~  x } )
 
Definitiondf-acnm 7348* Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
 |- AC  A  =  { x  |  ( A  e.  _V  /\ 
 A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y
 )  e.  ( f `
  y ) ) }
 
Theoremcardcl 7349* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. y  e. 
 On  y  ~~  A  ->  ( card `  A )  e.  On )
 
Theoremisnumi 7350 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card
 )
 
Theoremfinnum 7351 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  Fin  ->  A  e.  dom  card )
 
Theoremonenon 7352 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  On  ->  A  e.  dom  card )
 
Theoremcardval3ex 7353* The value of  ( card `  A
). (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e. 
 On  |  y  ~~  A } )
 
Theoremoncardval 7354* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  ( A  e.  On  ->  ( card `  A )  =  |^| { x  e. 
 On  |  x  ~~  A } )
 
Theoremcardonle 7355 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
 |-  ( A  e.  On  ->  ( card `  A )  C_  A )
 
Theoremcard0 7356 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
 |-  ( card `  (/) )  =  (/)
 
Theoremficardon 7357 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
 |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
 
Theoremcarden2bex 7358* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  ~~  B  /\  E. x  e. 
 On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B ) )
 
Theorempm54.43 7359 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
 |-  ( ( A  ~~  1o  /\  B  ~~  1o )  ->  ( ( A  i^i  B )  =  (/) 
 <->  ( A  u.  B )  ~~  2o ) )
 
Theorempr2nelem 7360 Lemma for pr2ne 7361. (Contributed by FL, 17-Aug-2008.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B ) 
 ->  { A ,  B }  ~~  2o )
 
Theorempr2ne 7361 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
 
Theoremen2prde 7362* A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.)
 |-  ( V  ~~  2o  ->  E. a E. b
 ( a  =/=  b  /\  V  =  { a ,  b } ) )
 
Theorempr1or2 7363 An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\ DECID  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
 
Theorempr2cv1 7364 If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
 |-  ( { A ,  B }  ~~  2o  ->  A  e.  _V )
 
Theorempr2cv2 7365 If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
 |-  ( { A ,  B }  ~~  2o  ->  B  e.  _V )
 
Theorempr2cv 7366 If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
 |-  ( { A ,  B }  ~~  2o  ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
Theoremexmidonfinlem 7367* Lemma for exmidonfin 7368. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
 
Theoremexmidonfin 7368 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 7030 and nnon 4701. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  ( om  =  ( On  i^i  Fin )  -> EXMID )
 
Theoremen2eleq 7369 Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
 |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P 
 \  { X }
 ) } )
 
Theoremen2other2 7370 Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
 |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) }
 )  =  X )
 
Theoremdju1p1e2 7371 Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( 1o 1o )  ~~  2o
 
Theoreminfpwfidom 7372 The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption 
( ~P A  i^i  Fin )  e.  _V because this theorem also implies that  A is a set if  ~P A  i^i  Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
 |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
 
Theoremexmidfodomrlemeldju 7373 Lemma for exmidfodomr 7378. A variant of djur 7232. (Contributed by Jim Kingdon, 2-Jul-2022.)
 |-  ( ph  ->  A  C_ 
 1o )   &    |-  ( ph  ->  B  e.  ( A 1o )
 )   =>    |-  ( ph  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
 
Theoremexmidfodomrlemreseldju 7374 Lemma for exmidfodomrlemrALT 7377. A variant of eldju 7231. (Contributed by Jim Kingdon, 9-Jul-2022.)
 |-  ( ph  ->  A  C_ 
 1o )   &    |-  ( ph  ->  B  e.  ( A 1o )
 )   =>    |-  ( ph  ->  (
 ( (/)  e.  A  /\  B  =  ( (inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `  (/) ) ) )
 
Theoremexmidfodomrlemim 7375* Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  (EXMID 
 ->  A. x A. y
 ( ( E. z  z  e.  y  /\  y 
 ~<_  x )  ->  E. f  f : x -onto-> y ) )
 
Theoremexmidfodomrlemr 7376* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  -> EXMID )
 
TheoremexmidfodomrlemrALT 7377* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7376. In particular, this proof uses eldju 7231 instead of djur 7232 and avoids djulclb 7218. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
 |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  -> EXMID )
 
Theoremexmidfodomr 7378* Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  (EXMID  <->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
 
Theoremacnrcl 7379 Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( X  e. AC  A  ->  A  e.  _V )
 
Theoremacneq 7380 Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  C  -> AC  A  = AC  C )
 
Theoremisacnm 7381* The property of being a choice set of length  A. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( X  e. AC  A  <->  A. f  e.  ( { z  e.  ~P X  |  E. j  j  e.  z }  ^m  A ) E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
 
Theoremfinacn 7382 Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  e.  Fin  -> AC  A  =  _V )
 
2.6.42  Axiom of Choice equivalents
 
Syntaxwac 7383 Formula for an abbreviation of the axiom of choice.
 wff CHOICE
 
Definitiondf-ac 7384* The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There are some decisions about how to write this definition especially around whether ax-setind 4628 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.)

 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x )
 )
 
Theoremacfun 7385* A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
 |-  ( ph  -> CHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
Theoremexmidaclem 7386* Lemma for exmidac 7387. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }   &    |-  B  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  y  =  { (/) } ) }   &    |-  C  =  { A ,  B }   =>    |-  (CHOICE 
 -> EXMID )
 
Theoremexmidac 7387 The axiom of choice implies excluded middle. See acexmid 5999 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  (CHOICE 
 -> EXMID )
 
2.6.43  Cardinal number arithmetic
 
Theoremendjudisj 7388 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A B )  ~~  ( A  u.  B ) )
 
Theoremdjuen 7389 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A C ) 
 ~~  ( B D ) )
 
Theoremdjuenun 7390 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D ) )
 
Theoremdju1en 7391 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  -.  A  e.  A )  ->  ( A 1o )  ~~  suc  A )
 
Theoremdju0en 7392 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  V  ->  ( A (/) )  ~~  A )
 
Theoremxp2dju 7393 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( 2o  X.  A )  =  ( A A )
 
Theoremdjucomen 7394 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B ) 
 ~~  ( B A ) )
 
Theoremdjuassen 7395 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( ( A B ) C )  ~~  ( A ( B C ) ) )
 
Theoremxpdjuen 7396 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
 
Theoremdjudoml 7397 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
 
Theoremdjudomr 7398 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )
 
2.6.44  Ordinal trichotomy
 
Theoremexmidontriimlem1 7399 Lemma for exmidontriim 7403. A variation of r19.30dc 2678. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps 
 \/  ch )  /\ EXMID )  ->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps  \/  A. x  e.  A  ch ) )
 
Theoremexmidontriimlem2 7400* Lemma for exmidontriim 7403. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >