HomeHome Intuitionistic Logic Explorer
Theorem List (p. 74 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7301-7400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-card 7301* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
 |- 
 card  =  ( x  e.  _V  |->  |^| { y  e. 
 On  |  y  ~~  x } )
 
Definitiondf-acnm 7302* Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
 |- AC  A  =  { x  |  ( A  e.  _V  /\ 
 A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y
 )  e.  ( f `
  y ) ) }
 
Theoremcardcl 7303* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. y  e. 
 On  y  ~~  A  ->  ( card `  A )  e.  On )
 
Theoremisnumi 7304 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card
 )
 
Theoremfinnum 7305 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  Fin  ->  A  e.  dom  card )
 
Theoremonenon 7306 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  On  ->  A  e.  dom  card )
 
Theoremcardval3ex 7307* The value of  ( card `  A
). (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e. 
 On  |  y  ~~  A } )
 
Theoremoncardval 7308* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  ( A  e.  On  ->  ( card `  A )  =  |^| { x  e. 
 On  |  x  ~~  A } )
 
Theoremcardonle 7309 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
 |-  ( A  e.  On  ->  ( card `  A )  C_  A )
 
Theoremcard0 7310 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
 |-  ( card `  (/) )  =  (/)
 
Theoremficardon 7311 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
 |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
 
Theoremcarden2bex 7312* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  ~~  B  /\  E. x  e. 
 On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B ) )
 
Theorempm54.43 7313 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
 |-  ( ( A  ~~  1o  /\  B  ~~  1o )  ->  ( ( A  i^i  B )  =  (/) 
 <->  ( A  u.  B )  ~~  2o ) )
 
Theorempr2nelem 7314 Lemma for pr2ne 7315. (Contributed by FL, 17-Aug-2008.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B ) 
 ->  { A ,  B }  ~~  2o )
 
Theorempr2ne 7315 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
 
Theorempr1or2 7316 An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\ DECID  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
 
Theoremexmidonfinlem 7317* Lemma for exmidonfin 7318. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
 
Theoremexmidonfin 7318 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6984 and nnon 4666. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  ( om  =  ( On  i^i  Fin )  -> EXMID )
 
Theoremen2eleq 7319 Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
 |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P 
 \  { X }
 ) } )
 
Theoremen2other2 7320 Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
 |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) }
 )  =  X )
 
Theoremdju1p1e2 7321 Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( 1o 1o )  ~~  2o
 
Theoreminfpwfidom 7322 The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption 
( ~P A  i^i  Fin )  e.  _V because this theorem also implies that  A is a set if  ~P A  i^i  Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
 |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
 
Theoremexmidfodomrlemeldju 7323 Lemma for exmidfodomr 7328. A variant of djur 7186. (Contributed by Jim Kingdon, 2-Jul-2022.)
 |-  ( ph  ->  A  C_ 
 1o )   &    |-  ( ph  ->  B  e.  ( A 1o )
 )   =>    |-  ( ph  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
 
Theoremexmidfodomrlemreseldju 7324 Lemma for exmidfodomrlemrALT 7327. A variant of eldju 7185. (Contributed by Jim Kingdon, 9-Jul-2022.)
 |-  ( ph  ->  A  C_ 
 1o )   &    |-  ( ph  ->  B  e.  ( A 1o )
 )   =>    |-  ( ph  ->  (
 ( (/)  e.  A  /\  B  =  ( (inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `  (/) ) ) )
 
Theoremexmidfodomrlemim 7325* Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  (EXMID 
 ->  A. x A. y
 ( ( E. z  z  e.  y  /\  y 
 ~<_  x )  ->  E. f  f : x -onto-> y ) )
 
Theoremexmidfodomrlemr 7326* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  -> EXMID )
 
TheoremexmidfodomrlemrALT 7327* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7326. In particular, this proof uses eldju 7185 instead of djur 7186 and avoids djulclb 7172. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
 |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  -> EXMID )
 
Theoremexmidfodomr 7328* Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  (EXMID  <->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
 
Theoremacnrcl 7329 Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( X  e. AC  A  ->  A  e.  _V )
 
Theoremacneq 7330 Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  C  -> AC  A  = AC  C )
 
Theoremisacnm 7331* The property of being a choice set of length  A. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( X  e.  V  /\  A  e.  W )  ->  ( X  e. AC  A  <->  A. f  e.  ( { z  e.  ~P X  |  E. j  j  e.  z }  ^m  A ) E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
 
Theoremfinacn 7332 Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  e.  Fin  -> AC  A  =  _V )
 
2.6.42  Axiom of Choice equivalents
 
Syntaxwac 7333 Formula for an abbreviation of the axiom of choice.
 wff CHOICE
 
Definitiondf-ac 7334* The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There are some decisions about how to write this definition especially around whether ax-setind 4593 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.)

 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x )
 )
 
Theoremacfun 7335* A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
 |-  ( ph  -> CHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
Theoremexmidaclem 7336* Lemma for exmidac 7337. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }   &    |-  B  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  y  =  { (/) } ) }   &    |-  C  =  { A ,  B }   =>    |-  (CHOICE 
 -> EXMID )
 
Theoremexmidac 7337 The axiom of choice implies excluded middle. See acexmid 5956 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  (CHOICE 
 -> EXMID )
 
2.6.43  Cardinal number arithmetic
 
Theoremendjudisj 7338 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A B )  ~~  ( A  u.  B ) )
 
Theoremdjuen 7339 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A C ) 
 ~~  ( B D ) )
 
Theoremdjuenun 7340 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D ) )
 
Theoremdju1en 7341 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  -.  A  e.  A )  ->  ( A 1o )  ~~  suc  A )
 
Theoremdju0en 7342 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  V  ->  ( A (/) )  ~~  A )
 
Theoremxp2dju 7343 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( 2o  X.  A )  =  ( A A )
 
Theoremdjucomen 7344 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B ) 
 ~~  ( B A ) )
 
Theoremdjuassen 7345 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( ( A B ) C )  ~~  ( A ( B C ) ) )
 
Theoremxpdjuen 7346 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
 
Theoremdjudoml 7347 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
 
Theoremdjudomr 7348 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )
 
2.6.44  Ordinal trichotomy
 
Theoremexmidontriimlem1 7349 Lemma for exmidontriim 7353. A variation of r19.30dc 2654. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps 
 \/  ch )  /\ EXMID )  ->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps  \/  A. x  e.  A  ch ) )
 
Theoremexmidontriimlem2 7350* Lemma for exmidontriim 7353. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
 
Theoremexmidontriimlem3 7351* Lemma for exmidontriim 7353. What we get to do based on induction on both  A and  B. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
Theoremexmidontriimlem4 7352* Lemma for exmidontriim 7353. The induction step for the induction on  A. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
Theoremexmidontriim 7353* Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  (EXMID 
 ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2.6.45  Excluded middle and the power set of a singleton
 
Theoremiftrueb01 7354 Using an  if expression to represent a truth value by  (/) or  1o. Unlike some theorems using  if,  ph does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
 |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )
 
Theorempw1m 7355* A truth value which is inhabited is equal to true. This is a variation of pwntru 4251 and pwtrufal 16075. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( ( A  e.  ~P 1o  /\  E. x  x  e.  A )  ->  A  =  1o )
 
Theorempw1if 7356 Expressing a truth value in terms of an  if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
 |-  ( A  e.  ~P 1o  ->  if ( A  =  1o ,  1o ,  (/) )  =  A )
 
Theorempw1on 7357 The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
 |- 
 ~P 1o  e.  On
 
Theorempw1dom2 7358 The power set of  1o dominates  2o. Also see pwpw0ss 3851 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
 |- 
 2o  ~<_  ~P 1o
 
Theorempw1ne0 7359 The power set of  1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  (/)
 
Theorempw1ne1 7360 The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  1o
 
Theorempw1ne3 7361 The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  3o
 
Theorempw1nel3 7362 Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
 
Theoremsucpw1ne3 7363 Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
 
Theoremsucpw1nel3 7364 The successor of the power set of 
1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  suc  ~P 1o  e.  3o
 
Theorem3nelsucpw1 7365 Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  3o  e.  suc  ~P 1o
 
Theoremsucpw1nss3 7366 Negated excluded middle implies that the successor of the power set of  1o is not a subset of  3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_ 
 3o )
 
Theorem3nsssucpw1 7367 Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
 
Theoremonntri35 7368* Double negated ordinal trichotomy.

There are five equivalent statements: (1)  -.  -.  A. x  e.  On A. y  e.  On ( x  e.  y  \/  x  =  y  \/  y  e.  x ), (2)  -.  -.  A. x  e.  On A. y  e.  On ( x  C_  y  \/  y  C_  x ), (3)  A. x  e.  On A. y  e.  On -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ), (4)  A. x  e.  On A. y  e.  On -.  -.  (
x  C_  y  \/  y  C_  x ), and (5)  -.  -. EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7369), (3) implies (5) (onntri35 7368), (5) implies (1) (onntri51 7371), (2) implies (4) (onntri24 7373), (4) implies (5) (onntri45 7372), and (5) implies (2) (onntri52 7375).

Another way of stating this is that EXMID is equivalent to trichotomy, either the  x  e.  y  \/  x  =  y  \/  y  e.  x or the  x  C_  y  \/  y  C_  x form, as shown in exmidontri 7370 and exmidontri2or 7374, respectively. Thus  -.  -. EXMID is equivalent to (1) or (2). In addition, 
-.  -. EXMID is equivalent to (3) by onntri3or 7376 and (4) by onntri2or 7377.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  -. EXMID )
 
Theoremonntri13 7369 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e. 
 On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremexmidontri 7370* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremonntri51 7371* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremonntri45 7372* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
 
Theoremonntri24 7373 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
Theoremexmidontri2or 7374* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
Theoremonntri52 7375* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
Theoremonntri3or 7376* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
 
Theoremonntri2or 7377* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
Theoremfmelpw1o 7378 With a formula  ph one can associate an element of 
~P 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than T. and F., by nndc 853, which translate to  1o and  (/) respectively by iftrue 3580 and iffalse 3583, giving pwtrufal 16075).

As proved in if0ab 15880, the associated element of  ~P 1o is the extension, in  ~P 1o, of the formula  ph. (Contributed by BJ, 15-Aug-2024.)

 |- 
 if ( ph ,  1o ,  (/) )  e.  ~P 1o
 
2.6.46  Apartness relations
 
Syntaxwap 7379 Apartness predicate symbol.
 wff  R Ap  A
 
Definitiondf-pap 7380* Apartness predicate. A relation  R is an apartness if it is irreflexive, symmetric, and cotransitive. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  ( R Ap  A  <->  ( ( R 
 C_  ( A  X.  A )  /\  A. x  e.  A  -.  x R x )  /\  ( A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) ) ) )
 
Syntaxwtap 7381 Tight apartness predicate symbol.
 wff  R TAp  A
 
Definitiondf-tap 7382* Tight apartness predicate. A relation  R is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( R TAp  A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) )
 
Theoremdftap2 7383* Tight apartness with the apartness properties from df-pap 7380 expanded. (Contributed by Jim Kingdon, 21-Feb-2025.)
 |-  ( R TAp  A  <->  ( R  C_  ( A  X.  A ) 
 /\  ( A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x ) )  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) 
 /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) ) )
 
Theoremtapeq1 7384 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |-  ( R  =  S  ->  ( R TAp  A  <->  S TAp  A )
 )
 
Theoremtapeq2 7385 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.)
 |-  ( A  =  B  ->  ( R TAp  A  <->  R TAp  B )
 )
 
Theoremnetap 7386* Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } TAp  A )
 
Theorem2onetap 7387* Negated equality is a tight apartness on  2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |- 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) } TAp  2o
 
Theorem2oneel 7388*  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |- 
 <. (/) ,  1o >.  e. 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }
 
Theorem2omotaplemap 7389* Lemma for 2omotap 7391. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( -.  -.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
 ) ) } TAp  2o )
 
Theorem2omotaplemst 7390* Lemma for 2omotap 7391. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( ( E* r  r TAp  2o  /\  -.  -.  ph )  ->  ph )
 
Theorem2omotap 7391 If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( E* r  r TAp 
 2o  -> EXMID
 )
 
Theoremexmidapne 7392* Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID 
 ->  ( R TAp  A  <->  R  =  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } )
 )
 
Theoremexmidmotap 7393* The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID  <->  A. x E* r  r TAp 
 x )
 
PART 3  CHOICE PRINCIPLES

We have already introduced the full Axiom of Choice df-ac 7334 but since it implies excluded middle as shown at exmidac 7337, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle.

 
3.1  Countable Choice and Dependent Choice
 
3.1.1  Introduce Countable Choice
 
Syntaxwacc 7394 Formula for an abbreviation of countable choice.
 wff CCHOICE
 
Definitiondf-cc 7395* The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7334 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
 |-  (CCHOICE  <->  A. x ( dom  x  ~~ 
 om  ->  E. f ( f 
 C_  x  /\  f  Fn  dom  x ) ) )
 
Theoremccfunen 7396* Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A 
 ~~  om )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
Theoremcc1 7397* Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  (CCHOICE 
 ->  A. x ( ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
 )  ->  E. f A. z  e.  x  ( f `  z
 )  e.  z ) )
 
Theoremcc2lem 7398* Lemma for cc2 7399. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   &    |-  A  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )   &    |-  G  =  ( n  e.  om  |->  ( 2nd `  (
 f `  ( A `  n ) ) ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
Theoremcc2 7399* Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
Theoremcc3 7400* Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  F  e.  _V )   &    |-  ( ph  ->  A. n  e.  N  E. w  w  e.  F )   &    |-  ( ph  ->  N  ~~ 
 om )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  F )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >