| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recmulnqg | Unicode version | ||
| Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) |
| Ref | Expression |
|---|---|
| recmulnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6007 |
. . . . 5
| |
| 2 | 1 | eqeq1d 2238 |
. . . 4
|
| 3 | 2 | anbi2d 464 |
. . 3
|
| 4 | eleq1 2292 |
. . . 4
| |
| 5 | oveq2 6008 |
. . . . 5
| |
| 6 | 5 | eqeq1d 2238 |
. . . 4
|
| 7 | 4, 6 | anbi12d 473 |
. . 3
|
| 8 | recexnq 7573 |
. . . 4
| |
| 9 | 1nq 7549 |
. . . . 5
| |
| 10 | mulcomnqg 7566 |
. . . . 5
| |
| 11 | mulassnqg 7567 |
. . . . 5
| |
| 12 | mulidnq 7572 |
. . . . 5
| |
| 13 | 9, 10, 11, 12 | caovimo 6198 |
. . . 4
|
| 14 | eu5 2125 |
. . . 4
| |
| 15 | 8, 13, 14 | sylanbrc 417 |
. . 3
|
| 16 | df-rq 7535 |
. . . 4
| |
| 17 | 3anass 1006 |
. . . . 5
| |
| 18 | 17 | opabbii 4150 |
. . . 4
|
| 19 | 16, 18 | eqtri 2250 |
. . 3
|
| 20 | 3, 7, 15, 19 | fvopab3g 5706 |
. 2
|
| 21 | ibar 301 |
. . 3
| |
| 22 | 21 | adantl 277 |
. 2
|
| 23 | 20, 22 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-mi 7489 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 |
| This theorem is referenced by: recclnq 7575 recidnq 7576 recrecnq 7577 recexprlem1ssl 7816 recexprlem1ssu 7817 |
| Copyright terms: Public domain | W3C validator |