| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recmulnqg | Unicode version | ||
| Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) | 
| Ref | Expression | 
|---|---|
| recmulnqg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 5929 | 
. . . . 5
 | |
| 2 | 1 | eqeq1d 2205 | 
. . . 4
 | 
| 3 | 2 | anbi2d 464 | 
. . 3
 | 
| 4 | eleq1 2259 | 
. . . 4
 | |
| 5 | oveq2 5930 | 
. . . . 5
 | |
| 6 | 5 | eqeq1d 2205 | 
. . . 4
 | 
| 7 | 4, 6 | anbi12d 473 | 
. . 3
 | 
| 8 | recexnq 7457 | 
. . . 4
 | |
| 9 | 1nq 7433 | 
. . . . 5
 | |
| 10 | mulcomnqg 7450 | 
. . . . 5
 | |
| 11 | mulassnqg 7451 | 
. . . . 5
 | |
| 12 | mulidnq 7456 | 
. . . . 5
 | |
| 13 | 9, 10, 11, 12 | caovimo 6117 | 
. . . 4
 | 
| 14 | eu5 2092 | 
. . . 4
 | |
| 15 | 8, 13, 14 | sylanbrc 417 | 
. . 3
 | 
| 16 | df-rq 7419 | 
. . . 4
 | |
| 17 | 3anass 984 | 
. . . . 5
 | |
| 18 | 17 | opabbii 4100 | 
. . . 4
 | 
| 19 | 16, 18 | eqtri 2217 | 
. . 3
 | 
| 20 | 3, 7, 15, 19 | fvopab3g 5634 | 
. 2
 | 
| 21 | ibar 301 | 
. . 3
 | |
| 22 | 21 | adantl 277 | 
. 2
 | 
| 23 | 20, 22 | bitr4d 191 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 | 
| This theorem is referenced by: recclnq 7459 recidnq 7460 recrecnq 7461 recexprlem1ssl 7700 recexprlem1ssu 7701 | 
| Copyright terms: Public domain | W3C validator |