ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg Unicode version

Theorem recmulnqg 7353
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )

Proof of Theorem recmulnqg
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . . 5  |-  ( x  =  A  ->  (
x  .Q  y )  =  ( A  .Q  y ) )
21eqeq1d 2179 . . . 4  |-  ( x  =  A  ->  (
( x  .Q  y
)  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
32anbi2d 461 . . 3  |-  ( x  =  A  ->  (
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  <-> 
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) ) )
4 eleq1 2233 . . . 4  |-  ( y  =  B  ->  (
y  e.  Q.  <->  B  e.  Q. ) )
5 oveq2 5861 . . . . 5  |-  ( y  =  B  ->  ( A  .Q  y )  =  ( A  .Q  B
) )
65eqeq1d 2179 . . . 4  |-  ( y  =  B  ->  (
( A  .Q  y
)  =  1Q  <->  ( A  .Q  B )  =  1Q ) )
74, 6anbi12d 470 . . 3  |-  ( y  =  B  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
8 recexnq 7352 . . . 4  |-  ( x  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) )
9 1nq 7328 . . . . 5  |-  1Q  e.  Q.
10 mulcomnqg 7345 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  .Q  w
)  =  ( w  .Q  z ) )
11 mulassnqg 7346 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  v  e.  Q. )  ->  (
( z  .Q  w
)  .Q  v )  =  ( z  .Q  ( w  .Q  v
) ) )
12 mulidnq 7351 . . . . 5  |-  ( z  e.  Q.  ->  (
z  .Q  1Q )  =  z )
139, 10, 11, 12caovimo 6046 . . . 4  |-  ( x  e.  Q.  ->  E* y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
14 eu5 2066 . . . 4  |-  ( E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q )  <->  ( E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  /\  E* y ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) )
158, 13, 14sylanbrc 415 . . 3  |-  ( x  e.  Q.  ->  E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
16 df-rq 7314 . . . 4  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) }
17 3anass 977 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) )
1817opabbii 4056 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) }
1916, 18eqtri 2191 . . 3  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) }
203, 7, 15, 19fvopab3g 5569 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
21 ibar 299 . . 3  |-  ( B  e.  Q.  ->  (
( A  .Q  B
)  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B )  =  1Q ) ) )
2221adantl 275 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  B )  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
2320, 22bitr4d 190 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485   E!weu 2019   E*wmo 2020    e. wcel 2141   {copab 4049   ` cfv 5198  (class class class)co 5853   Q.cnq 7242   1Qc1q 7243    .Q cmq 7245   *Qcrq 7246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312  df-1nqqs 7313  df-rq 7314
This theorem is referenced by:  recclnq  7354  recidnq  7355  recrecnq  7356  recexprlem1ssl  7595  recexprlem1ssu  7596
  Copyright terms: Public domain W3C validator