ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg Unicode version

Theorem recmulnqg 7453
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )

Proof of Theorem recmulnqg
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5926 . . . . 5  |-  ( x  =  A  ->  (
x  .Q  y )  =  ( A  .Q  y ) )
21eqeq1d 2202 . . . 4  |-  ( x  =  A  ->  (
( x  .Q  y
)  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
32anbi2d 464 . . 3  |-  ( x  =  A  ->  (
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  <-> 
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) ) )
4 eleq1 2256 . . . 4  |-  ( y  =  B  ->  (
y  e.  Q.  <->  B  e.  Q. ) )
5 oveq2 5927 . . . . 5  |-  ( y  =  B  ->  ( A  .Q  y )  =  ( A  .Q  B
) )
65eqeq1d 2202 . . . 4  |-  ( y  =  B  ->  (
( A  .Q  y
)  =  1Q  <->  ( A  .Q  B )  =  1Q ) )
74, 6anbi12d 473 . . 3  |-  ( y  =  B  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
8 recexnq 7452 . . . 4  |-  ( x  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) )
9 1nq 7428 . . . . 5  |-  1Q  e.  Q.
10 mulcomnqg 7445 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  .Q  w
)  =  ( w  .Q  z ) )
11 mulassnqg 7446 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  v  e.  Q. )  ->  (
( z  .Q  w
)  .Q  v )  =  ( z  .Q  ( w  .Q  v
) ) )
12 mulidnq 7451 . . . . 5  |-  ( z  e.  Q.  ->  (
z  .Q  1Q )  =  z )
139, 10, 11, 12caovimo 6114 . . . 4  |-  ( x  e.  Q.  ->  E* y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
14 eu5 2089 . . . 4  |-  ( E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q )  <->  ( E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  /\  E* y ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) )
158, 13, 14sylanbrc 417 . . 3  |-  ( x  e.  Q.  ->  E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
16 df-rq 7414 . . . 4  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) }
17 3anass 984 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) )
1817opabbii 4097 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) }
1916, 18eqtri 2214 . . 3  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) }
203, 7, 15, 19fvopab3g 5631 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
21 ibar 301 . . 3  |-  ( B  e.  Q.  ->  (
( A  .Q  B
)  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B )  =  1Q ) ) )
2221adantl 277 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  B )  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
2320, 22bitr4d 191 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503   E!weu 2042   E*wmo 2043    e. wcel 2164   {copab 4090   ` cfv 5255  (class class class)co 5919   Q.cnq 7342   1Qc1q 7343    .Q cmq 7345   *Qcrq 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-mqqs 7412  df-1nqqs 7413  df-rq 7414
This theorem is referenced by:  recclnq  7454  recidnq  7455  recrecnq  7456  recexprlem1ssl  7695  recexprlem1ssu  7696
  Copyright terms: Public domain W3C validator