ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg Unicode version

Theorem recmulnqg 7524
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )

Proof of Theorem recmulnqg
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5964 . . . . 5  |-  ( x  =  A  ->  (
x  .Q  y )  =  ( A  .Q  y ) )
21eqeq1d 2215 . . . 4  |-  ( x  =  A  ->  (
( x  .Q  y
)  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
32anbi2d 464 . . 3  |-  ( x  =  A  ->  (
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  <-> 
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) ) )
4 eleq1 2269 . . . 4  |-  ( y  =  B  ->  (
y  e.  Q.  <->  B  e.  Q. ) )
5 oveq2 5965 . . . . 5  |-  ( y  =  B  ->  ( A  .Q  y )  =  ( A  .Q  B
) )
65eqeq1d 2215 . . . 4  |-  ( y  =  B  ->  (
( A  .Q  y
)  =  1Q  <->  ( A  .Q  B )  =  1Q ) )
74, 6anbi12d 473 . . 3  |-  ( y  =  B  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
8 recexnq 7523 . . . 4  |-  ( x  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) )
9 1nq 7499 . . . . 5  |-  1Q  e.  Q.
10 mulcomnqg 7516 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  .Q  w
)  =  ( w  .Q  z ) )
11 mulassnqg 7517 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  v  e.  Q. )  ->  (
( z  .Q  w
)  .Q  v )  =  ( z  .Q  ( w  .Q  v
) ) )
12 mulidnq 7522 . . . . 5  |-  ( z  e.  Q.  ->  (
z  .Q  1Q )  =  z )
139, 10, 11, 12caovimo 6153 . . . 4  |-  ( x  e.  Q.  ->  E* y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
14 eu5 2102 . . . 4  |-  ( E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q )  <->  ( E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  /\  E* y ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) )
158, 13, 14sylanbrc 417 . . 3  |-  ( x  e.  Q.  ->  E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
16 df-rq 7485 . . . 4  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) }
17 3anass 985 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) )
1817opabbii 4119 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) }
1916, 18eqtri 2227 . . 3  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) }
203, 7, 15, 19fvopab3g 5665 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
21 ibar 301 . . 3  |-  ( B  e.  Q.  ->  (
( A  .Q  B
)  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B )  =  1Q ) ) )
2221adantl 277 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  B )  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
2320, 22bitr4d 191 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516   E!weu 2055   E*wmo 2056    e. wcel 2177   {copab 4112   ` cfv 5280  (class class class)co 5957   Q.cnq 7413   1Qc1q 7414    .Q cmq 7416   *Qcrq 7417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-mi 7439  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-mqqs 7483  df-1nqqs 7484  df-rq 7485
This theorem is referenced by:  recclnq  7525  recidnq  7526  recrecnq  7527  recexprlem1ssl  7766  recexprlem1ssu  7767
  Copyright terms: Public domain W3C validator