ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg Unicode version

Theorem recmulnqg 7342
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )

Proof of Theorem recmulnqg
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5858 . . . . 5  |-  ( x  =  A  ->  (
x  .Q  y )  =  ( A  .Q  y ) )
21eqeq1d 2179 . . . 4  |-  ( x  =  A  ->  (
( x  .Q  y
)  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
32anbi2d 461 . . 3  |-  ( x  =  A  ->  (
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  <-> 
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) ) )
4 eleq1 2233 . . . 4  |-  ( y  =  B  ->  (
y  e.  Q.  <->  B  e.  Q. ) )
5 oveq2 5859 . . . . 5  |-  ( y  =  B  ->  ( A  .Q  y )  =  ( A  .Q  B
) )
65eqeq1d 2179 . . . 4  |-  ( y  =  B  ->  (
( A  .Q  y
)  =  1Q  <->  ( A  .Q  B )  =  1Q ) )
74, 6anbi12d 470 . . 3  |-  ( y  =  B  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
8 recexnq 7341 . . . 4  |-  ( x  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) )
9 1nq 7317 . . . . 5  |-  1Q  e.  Q.
10 mulcomnqg 7334 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  .Q  w
)  =  ( w  .Q  z ) )
11 mulassnqg 7335 . . . . 5  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  v  e.  Q. )  ->  (
( z  .Q  w
)  .Q  v )  =  ( z  .Q  ( w  .Q  v
) ) )
12 mulidnq 7340 . . . . 5  |-  ( z  e.  Q.  ->  (
z  .Q  1Q )  =  z )
139, 10, 11, 12caovimo 6044 . . . 4  |-  ( x  e.  Q.  ->  E* y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
14 eu5 2066 . . . 4  |-  ( E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q )  <->  ( E. y
( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  /\  E* y ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) )
158, 13, 14sylanbrc 415 . . 3  |-  ( x  e.  Q.  ->  E! y ( y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
16 df-rq 7303 . . . 4  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) }
17 3anass 977 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) )
1817opabbii 4054 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) }  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) ) }
1916, 18eqtri 2191 . . 3  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  ( y  e.  Q.  /\  (
x  .Q  y )  =  1Q ) ) }
203, 7, 15, 19fvopab3g 5567 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
21 ibar 299 . . 3  |-  ( B  e.  Q.  ->  (
( A  .Q  B
)  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B )  =  1Q ) ) )
2221adantl 275 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( A  .Q  B )  =  1Q  <->  ( B  e.  Q.  /\  ( A  .Q  B
)  =  1Q ) ) )
2320, 22bitr4d 190 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485   E!weu 2019   E*wmo 2020    e. wcel 2141   {copab 4047   ` cfv 5196  (class class class)co 5851   Q.cnq 7231   1Qc1q 7232    .Q cmq 7234   *Qcrq 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-oadd 6397  df-omul 6398  df-er 6510  df-ec 6512  df-qs 6516  df-ni 7255  df-mi 7257  df-mpq 7296  df-enq 7298  df-nqqs 7299  df-mqqs 7301  df-1nqqs 7302  df-rq 7303
This theorem is referenced by:  recclnq  7343  recidnq  7344  recrecnq  7345  recexprlem1ssl  7584  recexprlem1ssu  7585
  Copyright terms: Public domain W3C validator