ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-srg Unicode version

Definition df-srg 13927
Description: Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
df-srg  |- SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Distinct variable group:    f, n, p, r, t, x, y, z

Detailed syntax breakdown of Definition df-srg
StepHypRef Expression
1 csrg 13926 . 2  class SRing
2 vf . . . . . . 7  setvar  f
32cv 1394 . . . . . 6  class  f
4 cmgp 13883 . . . . . 6  class mulGrp
53, 4cfv 5318 . . . . 5  class  (mulGrp `  f )
6 cmnd 13449 . . . . 5  class  Mnd
75, 6wcel 2200 . . . 4  wff  (mulGrp `  f )  e.  Mnd
8 vx . . . . . . . . . . . . . . . 16  setvar  x
98cv 1394 . . . . . . . . . . . . . . 15  class  x
10 vy . . . . . . . . . . . . . . . . 17  setvar  y
1110cv 1394 . . . . . . . . . . . . . . . 16  class  y
12 vz . . . . . . . . . . . . . . . . 17  setvar  z
1312cv 1394 . . . . . . . . . . . . . . . 16  class  z
14 vp . . . . . . . . . . . . . . . . 17  setvar  p
1514cv 1394 . . . . . . . . . . . . . . . 16  class  p
1611, 13, 15co 6001 . . . . . . . . . . . . . . 15  class  ( y p z )
17 vt . . . . . . . . . . . . . . . 16  setvar  t
1817cv 1394 . . . . . . . . . . . . . . 15  class  t
199, 16, 18co 6001 . . . . . . . . . . . . . 14  class  ( x t ( y p z ) )
209, 11, 18co 6001 . . . . . . . . . . . . . . 15  class  ( x t y )
219, 13, 18co 6001 . . . . . . . . . . . . . . 15  class  ( x t z )
2220, 21, 15co 6001 . . . . . . . . . . . . . 14  class  ( ( x t y ) p ( x t z ) )
2319, 22wceq 1395 . . . . . . . . . . . . 13  wff  ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )
249, 11, 15co 6001 . . . . . . . . . . . . . . 15  class  ( x p y )
2524, 13, 18co 6001 . . . . . . . . . . . . . 14  class  ( ( x p y ) t z )
2611, 13, 18co 6001 . . . . . . . . . . . . . . 15  class  ( y t z )
2721, 26, 15co 6001 . . . . . . . . . . . . . 14  class  ( ( x t z ) p ( y t z ) )
2825, 27wceq 1395 . . . . . . . . . . . . 13  wff  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) )
2923, 28wa 104 . . . . . . . . . . . 12  wff  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
30 vr . . . . . . . . . . . . 13  setvar  r
3130cv 1394 . . . . . . . . . . . 12  class  r
3229, 12, 31wral 2508 . . . . . . . . . . 11  wff  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
3332, 10, 31wral 2508 . . . . . . . . . 10  wff  A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
34 vn . . . . . . . . . . . . . 14  setvar  n
3534cv 1394 . . . . . . . . . . . . 13  class  n
3635, 9, 18co 6001 . . . . . . . . . . . 12  class  ( n t x )
3736, 35wceq 1395 . . . . . . . . . . 11  wff  ( n t x )  =  n
389, 35, 18co 6001 . . . . . . . . . . . 12  class  ( x t n )
3938, 35wceq 1395 . . . . . . . . . . 11  wff  ( x t n )  =  n
4037, 39wa 104 . . . . . . . . . 10  wff  ( ( n t x )  =  n  /\  (
x t n )  =  n )
4133, 40wa 104 . . . . . . . . 9  wff  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
4241, 8, 31wral 2508 . . . . . . . 8  wff  A. x  e.  r  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
43 c0g 13289 . . . . . . . . 9  class  0g
443, 43cfv 5318 . . . . . . . 8  class  ( 0g
`  f )
4542, 34, 44wsbc 3028 . . . . . . 7  wff  [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
46 cmulr 13111 . . . . . . . 8  class  .r
473, 46cfv 5318 . . . . . . 7  class  ( .r
`  f )
4845, 17, 47wsbc 3028 . . . . . 6  wff  [. ( .r `  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
49 cplusg 13110 . . . . . . 7  class  +g
503, 49cfv 5318 . . . . . 6  class  ( +g  `  f )
5148, 14, 50wsbc 3028 . . . . 5  wff  [. ( +g  `  f )  /  p ]. [. ( .r
`  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
52 cbs 13032 . . . . . 6  class  Base
533, 52cfv 5318 . . . . 5  class  ( Base `  f )
5451, 30, 53wsbc 3028 . . . 4  wff  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) )
557, 54wa 104 . . 3  wff  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) )
56 ccmn 13821 . . 3  class CMnd
5755, 2, 56crab 2512 . 2  class  { f  e. CMnd  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
581, 57wceq 1395 1  wff SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  issrg  13928
  Copyright terms: Public domain W3C validator