ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-srg Unicode version

Definition df-srg 13726
Description: Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
df-srg  |- SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Distinct variable group:    f, n, p, r, t, x, y, z

Detailed syntax breakdown of Definition df-srg
StepHypRef Expression
1 csrg 13725 . 2  class SRing
2 vf . . . . . . 7  setvar  f
32cv 1372 . . . . . 6  class  f
4 cmgp 13682 . . . . . 6  class mulGrp
53, 4cfv 5271 . . . . 5  class  (mulGrp `  f )
6 cmnd 13248 . . . . 5  class  Mnd
75, 6wcel 2176 . . . 4  wff  (mulGrp `  f )  e.  Mnd
8 vx . . . . . . . . . . . . . . . 16  setvar  x
98cv 1372 . . . . . . . . . . . . . . 15  class  x
10 vy . . . . . . . . . . . . . . . . 17  setvar  y
1110cv 1372 . . . . . . . . . . . . . . . 16  class  y
12 vz . . . . . . . . . . . . . . . . 17  setvar  z
1312cv 1372 . . . . . . . . . . . . . . . 16  class  z
14 vp . . . . . . . . . . . . . . . . 17  setvar  p
1514cv 1372 . . . . . . . . . . . . . . . 16  class  p
1611, 13, 15co 5944 . . . . . . . . . . . . . . 15  class  ( y p z )
17 vt . . . . . . . . . . . . . . . 16  setvar  t
1817cv 1372 . . . . . . . . . . . . . . 15  class  t
199, 16, 18co 5944 . . . . . . . . . . . . . 14  class  ( x t ( y p z ) )
209, 11, 18co 5944 . . . . . . . . . . . . . . 15  class  ( x t y )
219, 13, 18co 5944 . . . . . . . . . . . . . . 15  class  ( x t z )
2220, 21, 15co 5944 . . . . . . . . . . . . . 14  class  ( ( x t y ) p ( x t z ) )
2319, 22wceq 1373 . . . . . . . . . . . . 13  wff  ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )
249, 11, 15co 5944 . . . . . . . . . . . . . . 15  class  ( x p y )
2524, 13, 18co 5944 . . . . . . . . . . . . . 14  class  ( ( x p y ) t z )
2611, 13, 18co 5944 . . . . . . . . . . . . . . 15  class  ( y t z )
2721, 26, 15co 5944 . . . . . . . . . . . . . 14  class  ( ( x t z ) p ( y t z ) )
2825, 27wceq 1373 . . . . . . . . . . . . 13  wff  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) )
2923, 28wa 104 . . . . . . . . . . . 12  wff  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
30 vr . . . . . . . . . . . . 13  setvar  r
3130cv 1372 . . . . . . . . . . . 12  class  r
3229, 12, 31wral 2484 . . . . . . . . . . 11  wff  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
3332, 10, 31wral 2484 . . . . . . . . . 10  wff  A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
34 vn . . . . . . . . . . . . . 14  setvar  n
3534cv 1372 . . . . . . . . . . . . 13  class  n
3635, 9, 18co 5944 . . . . . . . . . . . 12  class  ( n t x )
3736, 35wceq 1373 . . . . . . . . . . 11  wff  ( n t x )  =  n
389, 35, 18co 5944 . . . . . . . . . . . 12  class  ( x t n )
3938, 35wceq 1373 . . . . . . . . . . 11  wff  ( x t n )  =  n
4037, 39wa 104 . . . . . . . . . 10  wff  ( ( n t x )  =  n  /\  (
x t n )  =  n )
4133, 40wa 104 . . . . . . . . 9  wff  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
4241, 8, 31wral 2484 . . . . . . . 8  wff  A. x  e.  r  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
43 c0g 13088 . . . . . . . . 9  class  0g
443, 43cfv 5271 . . . . . . . 8  class  ( 0g
`  f )
4542, 34, 44wsbc 2998 . . . . . . 7  wff  [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
46 cmulr 12910 . . . . . . . 8  class  .r
473, 46cfv 5271 . . . . . . 7  class  ( .r
`  f )
4845, 17, 47wsbc 2998 . . . . . 6  wff  [. ( .r `  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
49 cplusg 12909 . . . . . . 7  class  +g
503, 49cfv 5271 . . . . . 6  class  ( +g  `  f )
5148, 14, 50wsbc 2998 . . . . 5  wff  [. ( +g  `  f )  /  p ]. [. ( .r
`  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
52 cbs 12832 . . . . . 6  class  Base
533, 52cfv 5271 . . . . 5  class  ( Base `  f )
5451, 30, 53wsbc 2998 . . . 4  wff  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) )
557, 54wa 104 . . 3  wff  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) )
56 ccmn 13620 . . 3  class CMnd
5755, 2, 56crab 2488 . 2  class  { f  e. CMnd  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
581, 57wceq 1373 1  wff SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  issrg  13727
  Copyright terms: Public domain W3C validator