ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-srg Unicode version

Definition df-srg 13596
Description: Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
df-srg  |- SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Distinct variable group:    f, n, p, r, t, x, y, z

Detailed syntax breakdown of Definition df-srg
StepHypRef Expression
1 csrg 13595 . 2  class SRing
2 vf . . . . . . 7  setvar  f
32cv 1363 . . . . . 6  class  f
4 cmgp 13552 . . . . . 6  class mulGrp
53, 4cfv 5259 . . . . 5  class  (mulGrp `  f )
6 cmnd 13118 . . . . 5  class  Mnd
75, 6wcel 2167 . . . 4  wff  (mulGrp `  f )  e.  Mnd
8 vx . . . . . . . . . . . . . . . 16  setvar  x
98cv 1363 . . . . . . . . . . . . . . 15  class  x
10 vy . . . . . . . . . . . . . . . . 17  setvar  y
1110cv 1363 . . . . . . . . . . . . . . . 16  class  y
12 vz . . . . . . . . . . . . . . . . 17  setvar  z
1312cv 1363 . . . . . . . . . . . . . . . 16  class  z
14 vp . . . . . . . . . . . . . . . . 17  setvar  p
1514cv 1363 . . . . . . . . . . . . . . . 16  class  p
1611, 13, 15co 5925 . . . . . . . . . . . . . . 15  class  ( y p z )
17 vt . . . . . . . . . . . . . . . 16  setvar  t
1817cv 1363 . . . . . . . . . . . . . . 15  class  t
199, 16, 18co 5925 . . . . . . . . . . . . . 14  class  ( x t ( y p z ) )
209, 11, 18co 5925 . . . . . . . . . . . . . . 15  class  ( x t y )
219, 13, 18co 5925 . . . . . . . . . . . . . . 15  class  ( x t z )
2220, 21, 15co 5925 . . . . . . . . . . . . . 14  class  ( ( x t y ) p ( x t z ) )
2319, 22wceq 1364 . . . . . . . . . . . . 13  wff  ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )
249, 11, 15co 5925 . . . . . . . . . . . . . . 15  class  ( x p y )
2524, 13, 18co 5925 . . . . . . . . . . . . . 14  class  ( ( x p y ) t z )
2611, 13, 18co 5925 . . . . . . . . . . . . . . 15  class  ( y t z )
2721, 26, 15co 5925 . . . . . . . . . . . . . 14  class  ( ( x t z ) p ( y t z ) )
2825, 27wceq 1364 . . . . . . . . . . . . 13  wff  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) )
2923, 28wa 104 . . . . . . . . . . . 12  wff  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
30 vr . . . . . . . . . . . . 13  setvar  r
3130cv 1363 . . . . . . . . . . . 12  class  r
3229, 12, 31wral 2475 . . . . . . . . . . 11  wff  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
3332, 10, 31wral 2475 . . . . . . . . . 10  wff  A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
34 vn . . . . . . . . . . . . . 14  setvar  n
3534cv 1363 . . . . . . . . . . . . 13  class  n
3635, 9, 18co 5925 . . . . . . . . . . . 12  class  ( n t x )
3736, 35wceq 1364 . . . . . . . . . . 11  wff  ( n t x )  =  n
389, 35, 18co 5925 . . . . . . . . . . . 12  class  ( x t n )
3938, 35wceq 1364 . . . . . . . . . . 11  wff  ( x t n )  =  n
4037, 39wa 104 . . . . . . . . . 10  wff  ( ( n t x )  =  n  /\  (
x t n )  =  n )
4133, 40wa 104 . . . . . . . . 9  wff  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
4241, 8, 31wral 2475 . . . . . . . 8  wff  A. x  e.  r  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
43 c0g 12958 . . . . . . . . 9  class  0g
443, 43cfv 5259 . . . . . . . 8  class  ( 0g
`  f )
4542, 34, 44wsbc 2989 . . . . . . 7  wff  [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
46 cmulr 12781 . . . . . . . 8  class  .r
473, 46cfv 5259 . . . . . . 7  class  ( .r
`  f )
4845, 17, 47wsbc 2989 . . . . . 6  wff  [. ( .r `  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
49 cplusg 12780 . . . . . . 7  class  +g
503, 49cfv 5259 . . . . . 6  class  ( +g  `  f )
5148, 14, 50wsbc 2989 . . . . 5  wff  [. ( +g  `  f )  /  p ]. [. ( .r
`  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
52 cbs 12703 . . . . . 6  class  Base
533, 52cfv 5259 . . . . 5  class  ( Base `  f )
5451, 30, 53wsbc 2989 . . . 4  wff  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) )
557, 54wa 104 . . 3  wff  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) )
56 ccmn 13490 . . 3  class CMnd
5755, 2, 56crab 2479 . 2  class  { f  e. CMnd  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
581, 57wceq 1364 1  wff SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  issrg  13597
  Copyright terms: Public domain W3C validator