ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-srg Unicode version

Definition df-srg 12940
Description: Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
df-srg  |- SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Distinct variable group:    f, n, p, r, t, x, y, z

Detailed syntax breakdown of Definition df-srg
StepHypRef Expression
1 csrg 12939 . 2  class SRing
2 vf . . . . . . 7  setvar  f
32cv 1352 . . . . . 6  class  f
4 cmgp 12925 . . . . . 6  class mulGrp
53, 4cfv 5208 . . . . 5  class  (mulGrp `  f )
6 cmnd 12682 . . . . 5  class  Mnd
75, 6wcel 2146 . . . 4  wff  (mulGrp `  f )  e.  Mnd
8 vx . . . . . . . . . . . . . . . 16  setvar  x
98cv 1352 . . . . . . . . . . . . . . 15  class  x
10 vy . . . . . . . . . . . . . . . . 17  setvar  y
1110cv 1352 . . . . . . . . . . . . . . . 16  class  y
12 vz . . . . . . . . . . . . . . . . 17  setvar  z
1312cv 1352 . . . . . . . . . . . . . . . 16  class  z
14 vp . . . . . . . . . . . . . . . . 17  setvar  p
1514cv 1352 . . . . . . . . . . . . . . . 16  class  p
1611, 13, 15co 5865 . . . . . . . . . . . . . . 15  class  ( y p z )
17 vt . . . . . . . . . . . . . . . 16  setvar  t
1817cv 1352 . . . . . . . . . . . . . . 15  class  t
199, 16, 18co 5865 . . . . . . . . . . . . . 14  class  ( x t ( y p z ) )
209, 11, 18co 5865 . . . . . . . . . . . . . . 15  class  ( x t y )
219, 13, 18co 5865 . . . . . . . . . . . . . . 15  class  ( x t z )
2220, 21, 15co 5865 . . . . . . . . . . . . . 14  class  ( ( x t y ) p ( x t z ) )
2319, 22wceq 1353 . . . . . . . . . . . . 13  wff  ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )
249, 11, 15co 5865 . . . . . . . . . . . . . . 15  class  ( x p y )
2524, 13, 18co 5865 . . . . . . . . . . . . . 14  class  ( ( x p y ) t z )
2611, 13, 18co 5865 . . . . . . . . . . . . . . 15  class  ( y t z )
2721, 26, 15co 5865 . . . . . . . . . . . . . 14  class  ( ( x t z ) p ( y t z ) )
2825, 27wceq 1353 . . . . . . . . . . . . 13  wff  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) )
2923, 28wa 104 . . . . . . . . . . . 12  wff  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
30 vr . . . . . . . . . . . . 13  setvar  r
3130cv 1352 . . . . . . . . . . . 12  class  r
3229, 12, 31wral 2453 . . . . . . . . . . 11  wff  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
3332, 10, 31wral 2453 . . . . . . . . . 10  wff  A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )
34 vn . . . . . . . . . . . . . 14  setvar  n
3534cv 1352 . . . . . . . . . . . . 13  class  n
3635, 9, 18co 5865 . . . . . . . . . . . 12  class  ( n t x )
3736, 35wceq 1353 . . . . . . . . . . 11  wff  ( n t x )  =  n
389, 35, 18co 5865 . . . . . . . . . . . 12  class  ( x t n )
3938, 35wceq 1353 . . . . . . . . . . 11  wff  ( x t n )  =  n
4037, 39wa 104 . . . . . . . . . 10  wff  ( ( n t x )  =  n  /\  (
x t n )  =  n )
4133, 40wa 104 . . . . . . . . 9  wff  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
4241, 8, 31wral 2453 . . . . . . . 8  wff  A. x  e.  r  ( A. y  e.  r  A. z  e.  r  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
43 c0g 12626 . . . . . . . . 9  class  0g
443, 43cfv 5208 . . . . . . . 8  class  ( 0g
`  f )
4542, 34, 44wsbc 2960 . . . . . . 7  wff  [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
46 cmulr 12493 . . . . . . . 8  class  .r
473, 46cfv 5208 . . . . . . 7  class  ( .r
`  f )
4845, 17, 47wsbc 2960 . . . . . 6  wff  [. ( .r `  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
49 cplusg 12492 . . . . . . 7  class  +g
503, 49cfv 5208 . . . . . 6  class  ( +g  `  f )
5148, 14, 50wsbc 2960 . . . . 5  wff  [. ( +g  `  f )  /  p ]. [. ( .r
`  f )  / 
t ]. [. ( 0g
`  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( (
x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  (
( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  ( ( n t x )  =  n  /\  ( x t n )  =  n ) )
52 cbs 12428 . . . . . 6  class  Base
533, 52cfv 5208 . . . . 5  class  ( Base `  f )
5451, 30, 53wsbc 2960 . . . 4  wff  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) )
557, 54wa 104 . . 3  wff  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) )
56 ccmn 12884 . . 3  class CMnd
5755, 2, 56crab 2457 . 2  class  { f  e. CMnd  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
581, 57wceq 1353 1  wff SRing  =  {
f  e. CMnd  |  (
(mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  / 
r ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  issrg  12941
  Copyright terms: Public domain W3C validator