HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgsumprval 13101 Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  =  ( M  +  1 ) )   &    |-  ( ph  ->  F : { M ,  N } --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( F `  M )  .+  ( F `  N ) ) )
 
Theoremgsumpr12val 13102 Value of the group sum operation over the pair  { 1 ,  2 }. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F : { 1 ,  2 } --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( F `  1
 )  .+  ( F `  2 ) ) )
 
7.1.4  Semigroups

A semigroup (Smgrp, see df-sgrp 13104) is a set together with an associative binary operation (see Wikipedia, Semigroup, 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup 13104). In other words, a semigroup is an associative magma. The notion of semigroup is a generalization of that of group where the existence of an identity or inverses is not required.

 
Syntaxcsgrp 13103 Extend class notation with class of all semigroups.
 class Smgrp
 
Definitiondf-sgrp 13104* A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 13058), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
 
Theoremissgrp 13105* The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e. Smgrp  <->  ( M  e. Mgm  /\ 
 A. x  e.  B  A. y  e.  B  A. z  e.  B  (
 ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) )
 
Theoremissgrpv 13106* The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) ) )
 
Theoremissgrpn0 13107* The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( A  e.  B  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) ) )
 
Theoremisnsgrp 13108 A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
 Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )
 
Theoremsgrpmgm 13109 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  ( M  e. Smgrp  ->  M  e. Mgm )
 
Theoremsgrpass 13110 A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .o.  Y )  .o. 
 Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
 
Theoremsgrpcl 13111 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
Theoremsgrp0 13112 Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
 |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )
 
Theoremsgrp1 13113 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e. Smgrp )
 
Theoremissgrpd 13114* Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  G  e. Smgrp )
 
Theoremsgrppropd 13115* If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  ( ph  ->  B  =  (
 Base `  K ) )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Smgrp  <->  L  e. Smgrp ) )
 
Theoremprdsplusgsgrpcl 13116 Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I -->Smgrp )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F  .+  G )  e.  B )
 
Theoremprdssgrpd 13117 The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I -->Smgrp )   =>    |-  ( ph  ->  Y  e. Smgrp )
 
7.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 13119, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 13121. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 13118 Extend class notation with class of all monoids.
 class  Mnd
 
Definitiondf-mnd 13119* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 13125), whose operation is associative (see mndass 13126) and has a two-sided neutral element (see mndid 13127), see also ismnd 13121. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
 |- 
 Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
 )  /  p ]. E. e  e.  b  A. x  e.  b  ( ( e p x )  =  x  /\  ( x p e )  =  x ) }
 
Theoremismnddef 13120* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
 .+  a )  =  a  /\  ( a 
 .+  e )  =  a ) ) )
 
Theoremismnd 13121* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13125), whose operation is associative (so, a semigroup, see also mndass 13126) and has a two-sided neutral element (see mndid 13127). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd  <->  (
 A. a  e.  B  A. b  e.  B  ( ( a  .+  b
 )  e.  B  /\  A. c  e.  B  ( ( a  .+  b
 )  .+  c )  =  ( a  .+  (
 b  .+  c )
 ) )  /\  E. e  e.  B  A. a  e.  B  ( ( e 
 .+  a )  =  a  /\  ( a 
 .+  e )  =  a ) ) )
 
Theoremsgrpidmndm 13122* A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. Smgrp  /\ 
 E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
 
Theoremmndsgrp 13123 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
 |-  ( G  e.  Mnd  ->  G  e. Smgrp )
 
Theoremmndmgm 13124 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
 |-  ( M  e.  Mnd  ->  M  e. Mgm )
 
Theoremmndcl 13125 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremmndass 13126 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremmndid 13127* A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd 
 ->  E. u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
 
Theoremmndideu 13128* The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd 
 ->  E! u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
 
Theoremmnd32g 13129 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  ( Y  .+  Z )  =  ( Z  .+  Y ) )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremmnd12g 13130 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  ( X  .+  Y )  =  ( Y  .+  X ) )   =>    |-  ( ph  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
 
Theoremmnd4g 13131 Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  W  e.  B )   &    |-  ( ph  ->  ( Y  .+  Z )  =  ( Z  .+  Y ) )   =>    |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( ( X  .+  Z )  .+  ( Y 
 .+  W ) ) )
 
Theoremmndidcl 13132 The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  .0.  e.  B )
 
Theoremmndbn0 13133 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13132). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Mnd  ->  B  =/=  (/) )
 
Theoremhashfinmndnn 13134 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
Theoremmndplusf 13135 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  Mnd  ->  .+^ 
 : ( B  X.  B ) --> B )
 
Theoremmndlrid 13136 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X )
 )
 
Theoremmndlid 13137 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremmndrid 13138 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremismndd 13139* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  .0.  )  =  x )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremmndpfo 13140 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  Mnd  ->  .+^ 
 : ( B  X.  B ) -onto-> B )
 
Theoremmndfo 13141 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  : ( B  X.  B )
 -onto-> B )
 
Theoremmndpropd 13142* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
 
Theoremmndprop 13143 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Mnd  <->  L  e.  Mnd )
 
Theoremissubmnd 13144* Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  H  =  ( Gs  S )   =>    |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) )
 
Theoremress0g 13145  0g is unaffected by restriction. This is a bit more generic than submnd0 13146. (Contributed by Thierry Arnoux, 23-Oct-2017.)
 |-  S  =  ( Rs  A )   &    |-  B  =  (
 Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  =  ( 0g `  S ) )
 
Theoremsubmnd0 13146 The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  H  =  ( Gs  S )   =>    |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S 
 C_  B  /\  .0.  e.  S ) )  ->  .0.  =  ( 0g `  H ) )
 
Theoremmndinvmod 13147* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
 
Theoremprdsplusgcl 13148 Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I --> Mnd )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F  .+  G )  e.  B )
 
Theoremprdsidlem 13149* Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I --> Mnd )   &    |-  .0.  =  ( 0g  o.  R )   =>    |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  (
 (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x ) ) )
 
Theoremprdsmndd 13150 The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Mnd )   =>    |-  ( ph  ->  Y  e.  Mnd )
 
Theoremprds0g 13151 The identity in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Mnd )   =>    |-  ( ph  ->  ( 0g  o.  R )  =  ( 0g `  Y ) )
 
Theorempwsmnd 13152 The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   =>    |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  Y  e.  Mnd )
 
Theorempws0g 13153 The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  {  .0.  } )  =  ( 0g `  Y ) )
 
Theoremimasmnd2 13154* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  (
 a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `  a
 )  =  ( F `
  p )  /\  ( F `  b )  =  ( F `  q ) )  ->  ( F `  ( a 
 .+  b ) )  =  ( F `  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  W )   &    |-  ( ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( F `
  ( ( x 
 .+  y )  .+  z ) )  =  ( F `  ( x  .+  ( y  .+  z ) ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x ) )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  ( F `  ( x  .+  .0.  ) )  =  ( F `  x ) )   =>    |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasmnd 13155* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  (
 a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `  a
 )  =  ( F `
  p )  /\  ( F `  b )  =  ( F `  q ) )  ->  ( F `  ( a 
 .+  b ) )  =  ( F `  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Mnd )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasmndf1 13156 The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Mnd )  ->  U  e.  Mnd )
 
Theoremmnd1 13157 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Mnd )
 
Theoremmnd1id 13158 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
 
7.1.6  Monoid homomorphisms and submonoids
 
Syntaxcmhm 13159 Hom-set generator class for monoids.
 class MndHom
 
Syntaxcsubmnd 13160 Class function taking a monoid to its lattice of submonoids.
 class SubMnd
 
Definitiondf-mhm 13161* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- MndHom  =  ( s  e.  Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
 )  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
 ) y ) )  =  ( ( f `
  x ) (
 +g  `  t )
 ( f `  y
 ) )  /\  (
 f `  ( 0g `  s ) )  =  ( 0g `  t
 ) ) } )
 
Definitiondf-submnd 13162* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- SubMnd  =  ( s  e.  Mnd  |->  { t  e.  ~P ( Base `  s )  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  s
 ) y )  e.  t ) } )
 
Theoremismhm 13163* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  C  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   &    |-  .0.  =  ( 0g `  S )   &    |-  Y  =  ( 0g
 `  T )   =>    |-  ( F  e.  ( S MndHom  T )  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) 
 /\  ( F `  .0.  )  =  Y ) ) )
 
Theoremmhmex 13164 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )
 
Theoremmhmrcl1 13165 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( F  e.  ( S MndHom  T )  ->  S  e.  Mnd )
 
Theoremmhmrcl2 13166 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( F  e.  ( S MndHom  T )  ->  T  e.  Mnd )
 
Theoremmhmf 13167 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  C  =  (
 Base `  T )   =>    |-  ( F  e.  ( S MndHom  T )  ->  F : B --> C )
 
Theoremmhmpropd 13168* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   =>    |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M ) )
 
Theoremmhmlin 13169 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `
  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
  Y ) ) )
 
Theoremmhm0 13170 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- 
 .0.  =  ( 0g `  S )   &    |-  Y  =  ( 0g `  T )   =>    |-  ( F  e.  ( S MndHom  T )  ->  ( F `  .0.  )  =  Y )
 
Theoremidmhm 13171 The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
 |-  B  =  ( Base `  M )   =>    |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M )
 )
 
Theoremmhmf1o 13172 A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
 |-  B  =  ( Base `  R )   &    |-  C  =  (
 Base `  S )   =>    |-  ( F  e.  ( R MndHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S MndHom  R ) ) )
 
Theoremsubmrcl 13173 Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( S  e.  (SubMnd `  M )  ->  M  e.  Mnd )
 
Theoremissubm 13174* Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  .+  =  ( +g  `  M )   =>    |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
 
Theoremissubm2 13175 Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  H  =  ( Ms  S )   =>    |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  B  /\  .0.  e.  S  /\  H  e.  Mnd )
 ) )
 
Theoremissubmd 13176* Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
 |-  B  =  ( Base `  M )   &    |-  .+  =  ( +g  `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  ( ph  ->  M  e.  Mnd )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\  ( ( x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )   &    |-  (
 z  =  .0.  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  x  ->  ( ps  <->  th ) )   &    |-  (
 z  =  y  ->  ( ps  <->  ta ) )   &    |-  (
 z  =  ( x 
 .+  y )  ->  ( ps  <->  et ) )   =>    |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMnd `  M ) )
 
Theoremmndissubm 13177 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  S  e.  (SubMnd `  G )
 ) )
 
Theoremsubmss 13178 Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  M )   =>    |-  ( S  e.  (SubMnd `  M )  ->  S  C_  B )
 
Theoremsubmid 13179 Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  B  =  ( Base `  M )   =>    |-  ( M  e.  Mnd  ->  B  e.  (SubMnd `  M ) )
 
Theoremsubm0cl 13180 Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- 
 .0.  =  ( 0g `  M )   =>    |-  ( S  e.  (SubMnd `  M )  ->  .0.  e.  S )
 
Theoremsubmcl 13181 Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |- 
 .+  =  ( +g  `  M )   =>    |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
 
Theoremsubmmnd 13182 Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  H  =  ( Ms  S )   =>    |-  ( S  e.  (SubMnd `  M )  ->  H  e.  Mnd )
 
Theoremsubmbas 13183 The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.)
 |-  H  =  ( Ms  S )   =>    |-  ( S  e.  (SubMnd `  M )  ->  S  =  ( Base `  H )
 )
 
Theoremsubm0 13184 Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  H  =  ( Ms  S )   &    |-  .0.  =  ( 0g `  M )   =>    |-  ( S  e.  (SubMnd `  M )  ->  .0.  =  ( 0g `  H ) )
 
Theoremsubsubm 13185 A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  H  =  ( Gs  S )   =>    |-  ( S  e.  (SubMnd `  G )  ->  ( A  e.  (SubMnd `  H ) 
 <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )
 
Theorem0subm 13186 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G ) )
 
Theoreminsubm 13187 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
 |-  ( ( A  e.  (SubMnd `  M )  /\  B  e.  (SubMnd `  M ) )  ->  ( A  i^i  B )  e.  (SubMnd `  M )
 )
 
Theorem0mhm 13188 The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |- 
 .0.  =  ( 0g `  N )   &    |-  B  =  (
 Base `  M )   =>    |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N )
 )
 
Theoremresmhm 13189 Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  U  =  ( Ss  X )   =>    |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S ) )  ->  ( F  |`  X )  e.  ( U MndHom  T ) )
 
Theoremresmhm2 13190 One direction of resmhm2b 13191. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T ) )  ->  F  e.  ( S MndHom  T ) )
 
Theoremresmhm2b 13191 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubMnd `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )
 
Theoremmhmco 13192 The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U )
 )
 
Theoremmhmima 13193 The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
 |-  ( ( F  e.  ( M MndHom  N )  /\  X  e.  (SubMnd `  M ) )  ->  ( F
 " X )  e.  (SubMnd `  N )
 )
 
Theoremmhmeql 13194 The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S MndHom  T )  /\  G  e.  ( S MndHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
 )
 
7.1.7  Iterated sums in a monoid

One important use of words is as formal composites in cases where order is significant, using the general sum operator df-igsum 12961. If order is not significant, it is simpler to use families instead.

 
Theoremgsumvallem2 13195* Lemma for properties of the set of identities of  G. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x 
 .+  y )  =  y  /\  ( y 
 .+  x )  =  y ) }   =>    |-  ( G  e.  Mnd 
 ->  O  =  {  .0.  } )
 
Theoremgsumsubm 13196 Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  S  e.  (SubMnd `  G ) )   &    |-  ( ph  ->  F : A --> S )   &    |-  H  =  ( Gs  S )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsumfzz 13197* Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... N )  |->  .0.  ) )  =  .0.  )
 
Theoremgsumwsubmcl 13198 Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
 |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg 
 W )  e.  S )
 
Theoremgsumwcl 13199 Closure of the composite of a word in a structure  G. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  B  =  ( Base `  G )   =>    |-  ( ( G  e.  Mnd  /\  W  e. Word  B )  ->  ( G  gsumg 
 W )  e.  B )
 
Theoremgsumwmhm 13200 Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
 |-  B  =  ( Base `  M )   =>    |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M 
 gsumg  W ) )  =  ( N  gsumg  ( H  o.  W ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >