HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrpidcl 13101 The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  .0.  e.  B )
 
Theoremgrpbn0 13102 The base set of a group is not empty. It is also inhabited (see grpidcl 13101). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  =/=  (/) )
 
Theoremgrplid 13103 The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremgrprid 13104 The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremgrplidd 13105 The identity element of a group is a left identity. Deduction associated with grplid 13103. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (  .0.  .+  X )  =  X )
 
Theoremgrpridd 13106 The identity element of a group is a right identity. Deduction associated with grprid 13104. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .+  .0.  )  =  X )
 
Theoremgrpn0 13107 A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  ( G  e.  Grp  ->  G  =/=  (/) )
 
Theoremhashfingrpnn 13108 A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
Theoremgrprcan 13109 Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Z )  =  ( Y  .+  Z )  <->  X  =  Y ) )
 
Theoremgrpinveu 13110* The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  E! y  e.  B  ( y  .+  X )  =  .0.  )
 
Theoremgrpid 13111 Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremisgrpid2 13112 Properties showing that an element 
Z is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  ( ( Z  e.  B  /\  ( Z  .+  Z )  =  Z ) 
 <->  .0.  =  Z ) )
 
Theoremgrpidd2 13113* Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 13095. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  (  .0.  .+  x )  =  x )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  .0.  =  ( 0g `  G ) )
 
Theoremgrpinvfvalg 13114* The inverse function of a group. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Revised by Rohan Ridenour, 13-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
 .+  x )  =  .0.  ) ) )
 
Theoremgrpinvval 13115* The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
 
Theoremgrpinvfng 13116 Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  V  ->  N  Fn  B )
 
Theoremgrpsubfvalg 13117* Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
 .+  ( I `  y ) ) ) )
 
Theoremgrpsubval 13118 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  =  ( X  .+  ( I `  Y ) ) )
 
Theoremgrpinvf 13119 The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  N : B --> B )
 
Theoremgrpinvcl 13120 A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  X )  e.  B )
 
Theoremgrpinvcld 13121 A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N `  X )  e.  B )
 
Theoremgrplinv 13122 The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( ( N `  X )  .+  X )  =  .0.  )
 
Theoremgrprinv 13123 The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .+  ( N `  X ) )  =  .0.  )
 
Theoremgrpinvid1 13124 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <->  ( X  .+  Y )  =  .0.  ) )
 
Theoremgrpinvid2 13125 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <->  ( Y  .+  X )  =  .0.  ) )
 
Theoremisgrpinv 13126* Properties showing that a function 
M is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( ( M : B
 --> B  /\  A. x  e.  B  ( ( M `
  x )  .+  x )  =  .0.  ) 
 <->  N  =  M ) )
 
Theoremgrplinvd 13127 The left inverse of a group element. Deduction associated with grplinv 13122. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( ( N `  X )  .+  X )  =  .0.  )
 
Theoremgrprinvd 13128 The right inverse of a group element. Deduction associated with grprinv 13123. (Contributed by SN, 29-Jan-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .+  ( N `
  X ) )  =  .0.  )
 
Theoremgrplrinv 13129* In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  A. x  e.  B  E. y  e.  B  ( ( y  .+  x )  =  .0.  /\  ( x  .+  y
 )  =  .0.  )
 )
 
Theoremgrpidinv2 13130* A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  B ) 
 ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A )  /\  E. y  e.  B  ( ( y  .+  A )  =  .0.  /\  ( A  .+  y
 )  =  .0.  )
 ) )
 
Theoremgrpidinv 13131* A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp 
 ->  E. u  e.  B  A. x  e.  B  ( ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  /\  E. y  e.  B  ( ( y  .+  x )  =  u  /\  ( x  .+  y
 )  =  u ) ) )
 
Theoremgrpinvid 13132 The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
 |- 
 .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( N `  .0.  )  =  .0.  )
 
Theoremgrpressid 13133 A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12689. (Contributed by Jim Kingdon, 28-Feb-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
 
Theoremgrplcan 13134 Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  <->  X  =  Y ) )
 
Theoremgrpasscan1 13135 An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
 ( N `  X )  .+  Y ) )  =  Y )
 
Theoremgrpasscan2 13136 An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )
 
Theoremgrpidrcan 13137 If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  X  <->  Z  =  .0.  ) )
 
Theoremgrpidlcan 13138 If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  X  <->  Z  =  .0.  ) )
 
Theoremgrpinvinv 13139 Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  ( N `  X ) )  =  X )
 
Theoremgrpinvcnv 13140 The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  `' N  =  N )
 
Theoremgrpinv11 13141 The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  =  ( N `  Y )  <->  X  =  Y ) )
 
Theoremgrpinvf1o 13142 The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  N : B -1-1-onto-> B )
 
Theoremgrpinvnz 13143 The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `
  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  ->  ( N `  X )  =/=  .0.  )
 
Theoremgrpinvnzcl 13144 The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `
  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  e.  ( B  \  {  .0.  } ) )
 
Theoremgrpsubinv 13145 Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `
  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( N `  Y ) )  =  ( X  .+  Y ) )
 
Theoremgrplmulf1o 13146* Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  F  =  ( x  e.  B  |->  ( X  .+  x ) )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  F : B -1-1-onto-> B )
 
Theoremgrpinvpropdg 13147* If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( invg `  K )  =  ( invg `  L ) )
 
Theoremgrpidssd 13148* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
 |-  ( ph  ->  M  e.  Grp )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  B  C_  ( Base `  M ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x (
 +g  `  M )
 y )  =  ( x ( +g  `  S ) y ) )   =>    |-  ( ph  ->  ( 0g `  M )  =  ( 0g `  S ) )
 
Theoremgrpinvssd 13149* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
 |-  ( ph  ->  M  e.  Grp )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  B  C_  ( Base `  M ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x (
 +g  `  M )
 y )  =  ( x ( +g  `  S ) y ) )   =>    |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `
  X )  =  ( ( invg `  M ) `  X ) ) )
 
Theoremgrpinvadd 13150 The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
  Y )  .+  ( N `  X ) ) )
 
Theoremgrpsubf 13151 Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  Grp 
 ->  .-  : ( B  X.  B ) --> B )
 
Theoremgrpsubcl 13152 Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  e.  B )
 
Theoremgrpsubrcan 13153 Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  =  ( Y  .-  Z )  <->  X  =  Y ) )
 
Theoremgrpinvsub 13154 Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
 
Theoremgrpinvval2 13155 A df-neg 8193-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  X )  =  (  .0.  .-  X ) )
 
Theoremgrpsubid 13156 Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .-  X )  =  .0.  )
 
Theoremgrpsubid1 13157 Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .-  .0.  )  =  X )
 
Theoremgrpsubeq0 13158 If the difference between two group elements is zero, they are equal. (subeq0 8245 analog.) (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  =  .0.  <->  X  =  Y ) )
 
Theoremgrpsubadd0sub 13159 Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |- 
 .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  =  ( X  .+  (  .0.  .-  Y ) ) )
 
Theoremgrpsubadd 13160 Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  =  Z  <->  ( Z  .+  Y )  =  X ) )
 
Theoremgrpsubsub 13161 Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
 
Theoremgrpaddsubass 13162 Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .-  Z )  =  ( X  .+  ( Y  .-  Z ) ) )
 
Theoremgrppncan 13163 Cancellation law for subtraction (pncan 8225 analog). (Contributed by NM, 16-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y )  =  X )
 
Theoremgrpnpcan 13164 Cancellation law for subtraction (npcan 8228 analog). (Contributed by NM, 19-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y )  =  X )
 
Theoremgrpsubsub4 13165 Double group subtraction (subsub4 8252 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )
 
Theoremgrppnpcan2 13166 Cancellation law for mixed addition and subtraction. (pnpcan2 8259 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Z )  .-  ( Y  .+  Z ) )  =  ( X 
 .-  Y ) )
 
Theoremgrpnpncan 13167 Cancellation law for group subtraction. (npncan 8240 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .+  ( Y  .-  Z ) )  =  ( X 
 .-  Z ) )
 
Theoremgrpnpncan0 13168 Cancellation law for group subtraction (npncan2 8246 analog). (Contributed by AV, 24-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( ( X  .-  Y )  .+  ( Y  .-  X ) )  =  .0.  )
 
Theoremgrpnnncan2 13169 Cancellation law for group subtraction. (nnncan2 8256 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  .-  ( Y 
 .-  Z ) )  =  ( X  .-  Y ) )
 
Theoremdfgrp3mlem 13170* Lemma for dfgrp3m 13171. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) 
 ->  E. u  e.  B  A. a  e.  B  ( ( u  .+  a
 )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
 
Theoremdfgrp3m 13171* Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
 
Theoremdfgrp3me 13172* Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x 
 .+  y )  e.  B  /\  A. z  e.  B  ( ( x 
 .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
 
Theoremgrplactfval 13173* The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   =>    |-  ( A  e.  X  ->  ( F `  A )  =  (
 a  e.  X  |->  ( A  .+  a ) ) )
 
Theoremgrplactcnv 13174* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `  A ) ) ) )
 
Theoremgrplactf1o 13175* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  (
 ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( F `  A ) : X -1-1-onto-> X )
 
Theoremgrpsubpropdg 13176 Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
 |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrpsubpropd2 13177* Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrp1 13178 The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Grp )
 
Theoremgrp1inv 13179 The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I }
 ) )
 
Theoremimasgrp2 13180* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  W )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( F `
  ( ( x 
 .+  y )  .+  z ) )  =  ( F `  ( x  .+  ( y  .+  z ) ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x ) )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  .0.  ) )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrp 13181* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrpf1 13182 The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Grp )  ->  U  e.  Grp )
 
Theoremqusgrp2 13183* Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .+  b )  .~  ( p  .+  q
 ) ) )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( ( x  .+  y ) 
 .+  z )  .~  ( x  .+  ( y 
 .+  z ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  [  .0.  ]  .~  =  ( 0g `  U ) ) )
 
Theoremmhmlem 13184* Lemma for mhmmnd 13186 and ghmgrp 13188. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `  A )  .+^  ( F `
  B ) ) )
 
Theoremmhmid 13185* A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
 
Theoremmhmmnd 13186* The image of a monoid  G under a monoid homomorphism  F is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  H  e.  Mnd )
 
Theoremmhmfmhm 13187* The function fulfilling the conditions of mhmmnd 13186 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  F  e.  ( G MndHom  H ) )
 
Theoremghmgrp 13188* The image of a group  G under a group homomorphism  F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator  O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  H  e.  Grp )
 
7.2.2  Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element  x(of a monoid) to the power of a nonnegative integer 
n is defined and denoted by  x ^ n. Definition df-mulg 13190, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13076 of the inverse operation  invg.

 
Syntaxcmg 13189 Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group.
 class .g
 
Definitiondf-mulg 13190* Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x }
 ) )  /  s ]_ if ( 0  < 
 n ,  ( s `
  n ) ,  ( ( invg `  g ) `  (
 s `  -u n ) ) ) ) ) )
 
Theoremmulgfvalg 13191* Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  n ) ,  ( I `  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  -u n ) ) ) ) ) )
 
Theoremmulgval 13192 Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )   =>    |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N ) ) ) ) )
 
Theoremmulgex 13193 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
 |-  ( G  e.  V  ->  (.g `  G )  e. 
 _V )
 
Theoremmulgfng 13194 Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  Fn  ( ZZ 
 X.  B ) )
 
Theoremmulg0 13195 Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 0  .x.  X )  =  .0.  )
 
Theoremmulgnn 13196 Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .x.  =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X }
 ) )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( S `
  N ) )
 
Theoremmulgnngsum 13197* Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G 
 gsumg  F ) )
 
Theoremmulgnn0gsum 13198* Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN0  /\  X  e.  B ) 
 ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
 
Theoremmulg1 13199 Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 1  .x.  X )  =  X )
 
Theoremmulgnnp1 13200 Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (
 ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >