HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhmeocnv 13101 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K Homeo J ) )
 
Theoremhmeof1o2 13102 A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) ) 
 ->  F : X -1-1-onto-> Y )
 
Theoremhmeof1o 13103 A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y )
 
Theoremhmeoima 13104 The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  A  e.  J )  ->  ( F " A )  e.  K )
 
Theoremhmeoopn 13105 Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K ) )
 
Theoremhmeocld 13106 Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  ( Clsd `  K ) ) )
 
Theoremhmeontr 13107 Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( ( int `  K ) `  ( F " A ) )  =  ( F " (
 ( int `  J ) `  A ) ) )
 
Theoremhmeoimaf1o 13108* The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  G  =  ( x  e.  J  |->  ( F
 " x ) )   =>    |-  ( F  e.  ( J Homeo K )  ->  G : J -1-1-onto-> K )
 
Theoremhmeores 13109 The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) Homeo ( Kt  ( F
 " Y ) ) ) )
 
Theoremhmeoco 13110 The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
 
Theoremidhmeo 13111 The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  (  _I  |`  X )  e.  ( J Homeo J ) )
 
Theoremhmeocnvb 13112 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( Rel  F  ->  ( `' F  e.  ( J Homeo K )  <->  F  e.  ( K Homeo J ) ) )
 
Theoremtxhmeo 13113* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( J Homeo L ) )   &    |-  ( ph  ->  G  e.  ( K Homeo M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. ( F `
  x ) ,  ( G `  y
 ) >. )  e.  (
 ( J  tX  K ) Homeo ( L  tX  M ) ) )
 
Theoremtxswaphmeolem 13114* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
 
Theoremtxswaphmeo 13115* There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) Homeo ( K  tX  J ) ) )
 
8.2  Metric spaces
 
8.2.1  Pseudometric spaces
 
Theorempsmetrel 13116 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
 |- 
 Rel PsMet
 
Theoremispsmet 13117* Express the predicate " D is a pseudometric". (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X )  <->  ( D :
 ( X  X.  X )
 --> RR*  /\  A. x  e.  X  ( ( x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theorempsmetdmdm 13118 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  X  =  dom  dom  D )
 
Theorempsmetf 13119 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theorempsmetcl 13120 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR* )
 
Theorempsmet0 13121 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
 
Theorempsmettri2 13122 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theorempsmetsym 13123 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theorempsmettri 13124 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theorempsmetge0 13125 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theorempsmetxrge0 13126 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
 
Theorempsmetres2 13127 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R ) )
 
Theorempsmetlecl 13128 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X ) 
 /\  ( C  e.  RR  /\  ( A D B )  <_  C ) )  ->  ( A D B )  e.  RR )
 
Theoremdistspace 13129 A set  X together with a (distance) function  D which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set  X equipped with a distance  D, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( ( D :
 ( X  X.  X )
 --> RR*  /\  ( A D A )  =  0 )  /\  ( 0 
 <_  ( A D B )  /\  ( A D B )  =  ( B D A ) ) ) )
 
8.2.2  Basic metric space properties
 
Syntaxcxms 13130 Extend class notation with the class of extended metric spaces.
 class  *MetSp
 
Syntaxcms 13131 Extend class notation with the class of metric spaces.
 class  MetSp
 
Syntaxctms 13132 Extend class notation with the function mapping a metric to the metric space it defines.
 class toMetSp
 
Definitiondf-xms 13133 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 *MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  ( MetOpen `  ( ( dist `  f
 )  |`  ( ( Base `  f )  X.  ( Base `  f ) ) ) ) }
 
Definitiondf-ms 13134 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
 |- 
 MetSp  =  { f  e.  *MetSp  |  (
 ( dist `  f )  |`  ( ( Base `  f
 )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f ) ) }
 
Definitiondf-tms 13135 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- toMetSp  =  ( d  e.  U. ran  *Met  |->  ( { <. ( Base `  ndx ) , 
 dom  dom  d >. ,  <. (
 dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
 
Theoremmetrel 13136 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  Met
 
Theoremxmetrel 13137 The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  *Met
 
Theoremismet 13138* Express the predicate " D is a metric". (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D :
 ( X  X.  X )
 --> RR  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
 )  /\  A. z  e.  X  ( x D y )  <_  (
 ( z D x )  +  ( z D y ) ) ) ) ) )
 
Theoremisxmet 13139* Express the predicate " D is an extended metric". (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
 )  /\  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theoremismeti 13140* Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  X  e.  _V   &    |-  D : ( X  X.  X ) --> RR   &    |-  (
 ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <->  x  =  y
 ) )   &    |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( ( z D x )  +  (
 z D y ) ) )   =>    |-  D  e.  ( Met `  X )
 
Theoremisxmetd 13141* Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  D : ( X  X.  X ) --> RR* )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( ( x D y )  =  0  <-> 
 x  =  y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x D y )  <_  ( ( z D x ) +e
 ( z D y ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  X ) )
 
Theoremisxmet2d 13142* It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample:  D ( x ,  y )  =  if ( x  =  y ,  0 , -oo ) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  D : ( X  X.  X ) --> RR* )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
 0  <_  ( x D y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( ( x D y )  <_ 
 0 
 <->  x  =  y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  /\  ( ( z D x )  e. 
 RR  /\  ( z D y )  e. 
 RR ) )  ->  ( x D y ) 
 <_  ( ( z D x )  +  (
 z D y ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  X ) )
 
Theoremmetflem 13143* Lemma for metf 13145 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
 ( ( x D y )  =  0  <-> 
 x  =  y ) 
 /\  A. z  e.  X  ( x D y ) 
 <_  ( ( z D x )  +  (
 z D y ) ) ) ) )
 
Theoremxmetf 13144 Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theoremmetf 13145 Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
 |-  ( D  e.  ( Met `  X )  ->  D : ( X  X.  X ) --> RR )
 
Theoremxmetcl 13146 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( A D B )  e.  RR* )
 
Theoremmetcl 13147 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
 
Theoremismet2 13148 An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
 
Theoremmetxmet 13149 A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  D  e.  ( *Met `  X ) )
 
Theoremxmetdmdm 13150 Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )
 
Theoremmetdmdm 13151 Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  X  =  dom  dom  D )
 
Theoremxmetunirn 13152 Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
 |-  ( D  e.  U. ran  *Met  <->  D  e.  ( *Met `  dom  dom  D ) )
 
Theoremxmeteq0 13153 The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( ( A D B )  =  0  <->  A  =  B ) )
 
Theoremmeteq0 13154 The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( ( A D B )  =  0  <->  A  =  B ) )
 
Theoremxmettri2 13155 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theoremmettri2 13156 Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A )  +  ( C D B ) ) )
 
Theoremxmet0 13157 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X )  ->  ( A D A )  =  0
 )
 
Theoremmet0 13158 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X ) 
 ->  ( A D A )  =  0 )
 
Theoremxmetge0 13159 The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  0  <_  ( A D B ) )
 
Theoremmetge0 13160 The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theoremxmetlecl 13161 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  RR  /\  ( A D B )  <_  C ) )  ->  ( A D B )  e.  RR )
 
Theoremxmetsym 13162 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( A D B )  =  ( B D A ) )
 
Theoremxmetpsmet 13163 An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X ) )
 
Theoremxmettpos 13164 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  -> tpos 
 D  =  D )
 
Theoremmetsym 13165 The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theoremxmettri 13166 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theoremmettri 13167 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C )  +  ( C D B ) ) )
 
Theoremxmettri3 13168 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( A D B )  <_  (
 ( A D C ) +e ( B D C ) ) )
 
Theoremmettri3 13169 Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.)
 |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C )  +  ( B D C ) ) )
 
Theoremxmetrtri 13170 One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( ( A D C ) +e  -e ( B D C ) )  <_  ( A D B ) )
 
Theoremmetrtri 13171 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
 |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )
 
Theoremmetn0 13172 A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  ( D  =/=  (/)  <->  X  =/=  (/) ) )
 
Theoremxmetres2 13173 Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( *Met `  R ) )
 
Theoremmetreslem 13174 Lemma for metres 13177. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |-  ( dom  D  =  ( X  X.  X ) 
 ->  ( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
 
Theoremmetres2 13175 Lemma for metres 13177. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( D  e.  ( Met `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( Met `  R ) )
 
Theoremxmetres 13176 A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( *Met `  ( X  i^i  R ) ) )
 
Theoremmetres 13177 A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  ( D  |`  ( R  X.  R ) )  e.  ( Met `  ( X  i^i  R ) ) )
 
Theorem0met 13178 The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  (/)  e.  ( Met `  (/) )
 
8.2.3  Metric space balls
 
Theoremblfvalps 13179* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  < 
 r } ) )
 
Theoremblfval 13180* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.)
 |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  < 
 r } ) )
 
Theoremblex 13181 A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e.  _V )
 
Theoremblvalps 13182* The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  <  R } )
 
Theoremblval 13183* The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  <  R } )
 
Theoremelblps 13184 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  <  R ) ) )
 
Theoremelbl 13185 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  <  R ) ) )
 
Theoremelbl2ps 13186 Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  ->  ( A  e.  ( P (
 ball `  D ) R )  <->  ( P D A )  <  R ) )
 
Theoremelbl2 13187 Membership in a ball. (Contributed by NM, 9-Mar-2007.)
 |-  ( ( ( D  e.  ( *Met `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
 )  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
 ( P D A )  <  R ) )
 
Theoremelbl3ps 13188 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
 |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  ->  ( A  e.  ( P (
 ball `  D ) R )  <->  ( A D P )  <  R ) )
 
Theoremelbl3 13189 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
 |-  ( ( ( D  e.  ( *Met `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
 )  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
 ( A D P )  <  R ) )
 
Theoremblcomps 13190 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  ->  ( A  e.  ( P (
 ball `  D ) R )  <->  P  e.  ( A ( ball `  D ) R ) ) )
 
Theoremblcom 13191 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.)
 |-  ( ( ( D  e.  ( *Met `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
 )  ->  ( A  e.  ( P ( ball `  D ) R )  <->  P  e.  ( A ( ball `  D ) R ) ) )
 
Theoremxblpnfps 13192 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
 
Theoremxblpnf 13193 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
 
Theoremblpnf 13194 The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( D  e.  ( Met `  X )  /\  P  e.  X ) 
 ->  ( P ( ball `  D ) +oo )  =  X )
 
Theorembldisj 13195 Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
 |-  ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D ) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )
 
Theoremblgt0 13196 A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  /\  A  e.  ( P ( ball `  D ) R ) )  -> 
 0  <  R )
 
Theorembl2in 13197 Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X ) 
 /\  ( R  e.  RR  /\  R  <_  (
 ( P D Q )  /  2 ) ) )  ->  ( ( P ( ball `  D ) R )  i^i  ( Q ( ball `  D ) R ) )  =  (/) )
 
Theoremxblss2ps 13198 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13201 for extended metrics, we have to assume the balls are a finite distance apart, or else  P will not even be in the infinity ball around  Q. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ph  ->  D  e.  (PsMet `  X )
 )   &    |-  ( ph  ->  P  e.  X )   &    |-  ( ph  ->  Q  e.  X )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  S  e.  RR* )   &    |-  ( ph  ->  ( P D Q )  e.  RR )   &    |-  ( ph  ->  ( P D Q )  <_  ( S +e  -e R ) )   =>    |-  ( ph  ->  ( P ( ball `  D ) R )  C_  ( Q ( ball `  D ) S ) )
 
Theoremxblss2 13199 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13201 for extended metrics, we have to assume the balls are a finite distance apart, or else  P will not even be in the infinity ball around  Q. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  D  e.  ( *Met `  X ) )   &    |-  ( ph  ->  P  e.  X )   &    |-  ( ph  ->  Q  e.  X )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  S  e.  RR* )   &    |-  ( ph  ->  ( P D Q )  e.  RR )   &    |-  ( ph  ->  ( P D Q )  <_  ( S +e  -e R ) )   =>    |-  ( ph  ->  ( P ( ball `  D ) R )  C_  ( Q ( ball `  D ) S ) )
 
Theoremblss2ps 13200 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X ) 
 /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_  ( S  -  R ) ) ) 
 ->  ( P ( ball `  D ) R ) 
 C_  ( Q (
 ball `  D ) S ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >