HomeHome Intuitionistic Logic Explorer
Theorem List (p. 132 of 152)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtrivsubgsnd 13101 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (SubGrp `  G )  =  { B } )
 
Theoremisnsg 13102* Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
 ( x  .+  y
 )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
 
Theoremisnsg2 13103* Weaken the condition of isnsg 13102 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
 ( x  .+  y
 )  e.  S  ->  ( y  .+  x )  e.  S ) ) )
 
Theoremnsgbi 13104 Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
 
Theoremnsgsubg 13105 A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  ( S  e.  (NrmSGrp `  G )  ->  S  e.  (SubGrp `  G )
 )
 
Theoremnsgconj 13106 The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X  /\  B  e.  S )  ->  ( ( A  .+  B )  .-  A )  e.  S )
 
Theoremisnsg3 13107* A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
 ( x  .+  y
 )  .-  x )  e.  S ) )
 
Theoremelnmz 13108* Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   =>    |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z
 )  e.  S  <->  ( z  .+  A )  e.  S ) ) )
 
Theoremnmzbi 13109* Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   =>    |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A 
 .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
 
Theoremnmzsubg 13110* The normalizer NG(S) of a subset  S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
 )
 
Theoremssnmz 13111* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  C_  N )
 
Theoremisnsg4 13112* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G ) 
 <->  ( S  e.  (SubGrp `  G )  /\  N  =  X ) )
 
Theoremnmznsg 13113* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  H  =  ( Gs  N )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  e.  (NrmSGrp `  H )
 )
 
Theorem0nsg 13114 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G ) )
 
Theoremnsgid 13115 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G ) )
 
Theorem0idnsgd 13116 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  { {  .0.  } ,  B }  C_  (NrmSGrp `  G )
 )
 
Theoremtrivnsgd 13117 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  =  { B } )
 
Theoremtriv1nsgd 13118 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )
 
Theorem1nsgtrivd 13119 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )   =>    |-  ( ph  ->  B  =  {  .0.  } )
 
Theoremreleqgg 13120 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  R  =  ( G ~QG  S )   =>    |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )
 
Theoremeqgex 13121 The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
 
Theoremeqgfval 13122* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  R  =  ( G ~QG 
 S )   =>    |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y )  e.  S ) }
 )
 
Theoremeqgval 13123 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  R  =  ( G ~QG 
 S )   =>    |-  ( ( G  e.  V  /\  S  C_  X )  ->  ( A R B 
 <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B )  e.  S ) ) )
 
Theoremeqger 13124 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   =>    |-  ( Y  e.  (SubGrp `  G )  ->  .~  Er  X )
 
Theoremeqglact 13125* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A 
 .+  x ) )
 " Y ) )
 
Theoremeqgid 13126 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( Y  e.  (SubGrp `  G )  ->  [  .0.  ] 
 .~  =  Y )
 
Theoremeqgen 13127 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   =>    |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
 
Theoremeqgcpbl 13128 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( Y  e.  (NrmSGrp `  G )  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C 
 .+  D ) ) )
 
Theoremeqg0el 13129 Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
 |- 
 .~  =  ( G ~QG  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G ) )  ->  ( [ X ]  .~  =  H  <->  X  e.  H ) )
 
Theoremquselbasg 13130* Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  U  =  ( G 
 /.s  .~  )   &    |-  B  =  (
 Base `  G )   =>    |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  ( Base `  U ) 
 <-> 
 E. x  e.  B  X  =  [ x ]  .~  ) )
 
Theoremquseccl0g 13131 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13133 for arbitrary sets  G. (Revised by AV, 24-Feb-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  H  =  ( G 
 /.s  .~  )   &    |-  C  =  (
 Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( G  e.  V  /\  X  e.  C  /\  S  e.  Z )  ->  [ X ]  .~  e.  B )
 
Theoremqusgrp 13132 If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   =>    |-  ( S  e.  (NrmSGrp `  G )  ->  H  e.  Grp )
 
Theoremquseccl 13133 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  B )
 
Theoremqusadd 13134 Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+b  =  ( +g  `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ] ( G ~QG  S )  .+b  [ Y ] ( G ~QG  S ) )  =  [
 ( X  .+  Y ) ] ( G ~QG  S )
 )
 
7.2.4  Elementary theory of group homomorphisms
 
Syntaxcghm 13135 Extend class notation with the generator of group hom-sets.
 class  GrpHom
 
Definitiondf-ghm 13136* A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  GrpHom  =  ( s  e. 
 Grp ,  t  e.  Grp  |->  { g  |  [. ( Base `  s )  /  w ]. ( g : w --> ( Base `  t )  /\  A. x  e.  w  A. y  e.  w  (
 g `  ( x ( +g  `  s )
 y ) )  =  ( ( g `  x ) ( +g  `  t ) ( g `
  y ) ) ) } )
 
Theoremreldmghm 13137 Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |- 
 Rel  dom  GrpHom
 
Theoremisghm 13138* Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
  v ) ) ) ) )
 
Theoremisghm3 13139* Property of a group homomorphism, similar to ismhm 12875. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X
 --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `  v
 ) ) ) ) )
 
Theoremghmgrp1 13140 A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
 
Theoremghmgrp2 13141 A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
 
Theoremghmf 13142 A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   =>    |-  ( F  e.  ( S  GrpHom  T ) 
 ->  F : X --> Y )
 
Theoremghmlin 13143 A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( F  e.  ( S  GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `
  U )  .+^  ( F `  V ) ) )
 
Theoremghmid 13144 A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  Y  =  ( 0g
 `  S )   &    |-  .0.  =  ( 0g `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  =  .0.  )
 
Theoremghminv 13145 A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  M  =  ( invg `  S )   &    |-  N  =  ( invg `  T )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  X  e.  B )  ->  ( F `  ( M `  X ) )  =  ( N `
  ( F `  X ) ) )
 
Theoremghmsub 13146 Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  .-  =  ( -g `  S )   &    |-  N  =  ( -g `  T )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  B  /\  V  e.  B ) 
 ->  ( F `  ( U  .-  V ) )  =  ( ( F `
  U ) N ( F `  V ) ) )
 
Theoremisghmd 13147* Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  ( ph  ->  T  e.  Grp )   &    |-  ( ph  ->  F : X --> Y )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( F `  ( x  .+  y
 ) )  =  ( ( F `  x )  .+^  ( F `  y ) ) )   =>    |-  ( ph  ->  F  e.  ( S  GrpHom  T ) )
 
Theoremghmmhm 13148 A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
 
Theoremghmmhmb 13149 Group homomorphisms and monoid homomorphisms coincide. (Thus,  GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  ( S MndHom  T ) )
 
Theoremghmmulg 13150 A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G  GrpHom  H ) 
 /\  N  e.  ZZ  /\  X  e.  B ) 
 ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremghmrn 13151 The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T ) )
 
Theorem0ghm 13152 The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |- 
 .0.  =  ( 0g `  N )   &    |-  B  =  (
 Base `  M )   =>    |-  ( ( M  e.  Grp  /\  N  e.  Grp )  ->  ( B  X.  {  .0.  } )  e.  ( M  GrpHom  N ) )
 
Theoremidghm 13153 The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
 
Theoremresghm 13154 Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  U  =  ( Ss  X )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  X  e.  (SubGrp `  S ) )  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
 
Theoremresghm2 13155 One direction of resghm2b 13156. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( F  e.  ( S  GrpHom  U ) 
 /\  X  e.  (SubGrp `  T ) )  ->  F  e.  ( S  GrpHom  T ) )
 
Theoremresghm2b 13156 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubGrp `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  ( S  GrpHom  U ) ) )
 
Theoremghmghmrn 13157 A group homomorphism from  G to  H is also a group homomorphism from  G to its image in  H. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by AV, 26-Aug-2021.)
 |-  U  =  ( Ts  ran 
 F )   =>    |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S  GrpHom  U ) )
 
Theoremghmco 13158 The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ( F  e.  ( T  GrpHom  U ) 
 /\  G  e.  ( S  GrpHom  T ) ) 
 ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
 
Theoremghmima 13159 The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  (SubGrp `  S ) )  ->  ( F " U )  e.  (SubGrp `  T ) )
 
Theoremghmpreima 13160 The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  V  e.  (SubGrp `  T ) )  ->  ( `' F " V )  e.  (SubGrp `  S ) )
 
Theoremghmeql 13161 The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  G  e.  ( S  GrpHom  T ) ) 
 ->  dom  ( F  i^i  G )  e.  (SubGrp `  S ) )
 
Theoremghmnsgima 13162 The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Y  =  ( Base `  T )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (NrmSGrp `  T ) )
 
Theoremghmnsgpreima 13163 The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  V  e.  (NrmSGrp `  T ) )  ->  ( `' F " V )  e.  (NrmSGrp `  S ) )
 
Theoremghmker 13164 The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 .0.  =  ( 0g `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  ->  ( `' F " {  .0.  } )  e.  (NrmSGrp `  S ) )
 
Theoremghmeqker 13165 Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  T )   &    |-  K  =  ( `' F " {  .0.  }
 )   &    |-  .-  =  ( -g `  S )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  B  /\  V  e.  B ) 
 ->  ( ( F `  U )  =  ( F `  V )  <->  ( U  .-  V )  e.  K ) )
 
Theoremf1ghm0to0 13166 If a group homomorphism  F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( ( F  e.  ( R  GrpHom  S ) 
 /\  F : A -1-1-> B 
 /\  X  e.  A )  ->  ( ( F `
  X )  =  .0.  <->  X  =  N ) )
 
Theoremghmf1 13167* Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0.  ->  x  =  N ) ) )
 
Theoremkerf1ghm 13168 A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N } ) )
 
Theoremghmf1o 13169 A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   =>    |-  ( F  e.  ( S  GrpHom  T ) 
 ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T 
 GrpHom  S ) ) )
 
Theoremconjghm 13170* Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  X  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X
 -1-1-onto-> X ) )
 
Theoremconjsubg 13171* A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G ) )
 
Theoremconjsubgen 13172* A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
 
Theoremconjnmz 13173* A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   &    |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }   =>    |-  (
 ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
 
Theoremconjnmzb 13174* Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   &    |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }   =>    |-  ( S  e.  (SubGrp `  G )  ->  ( A  e.  N 
 <->  ( A  e.  X  /\  S  =  ran  F ) ) )
 
Theoremconjnsg 13175* A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X )  ->  S  =  ran  F )
 
Theoremqusghm 13176* If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  H  =  ( G  /.s  ( G ~QG  Y ) )   &    |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )   =>    |-  ( Y  e.  (NrmSGrp `  G )  ->  F  e.  ( G  GrpHom  H ) )
 
Theoremghmpropd 13177* Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   =>    |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
 
7.2.5  Abelian groups
 
7.2.5.1  Definition and basic properties
 
Syntaxccmn 13178 Extend class notation with class of all commutative monoids.
 class CMnd
 
Syntaxcabl 13179 Extend class notation with class of all Abelian groups.
 class  Abel
 
Definitiondf-cmn 13180* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |- CMnd  =  { g  e.  Mnd  | 
 A. a  e.  ( Base `  g ) A. b  e.  ( Base `  g ) ( a ( +g  `  g
 ) b )  =  ( b ( +g  `  g ) a ) }
 
Definitiondf-abl 13181 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |- 
 Abel  =  ( Grp  i^i CMnd )
 
Theoremisabl 13182 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
 |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  G  e. CMnd ) )
 
Theoremablgrp 13183 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
 |-  ( G  e.  Abel  ->  G  e.  Grp )
 
Theoremablgrpd 13184 An Abelian group is a group, deduction form of ablgrp 13183. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremablcmn 13185 An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e.  Abel  ->  G  e. CMnd )
 
Theoremablcmnd 13186 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e. CMnd )
 
Theoremiscmn 13187* The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e. CMnd  <->  ( G  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  (
 y  .+  x )
 ) )
 
Theoremisabl2 13188* The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
 
Theoremcmnpropd 13189* If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
 
Theoremablpropd 13190* If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Abel 
 <->  L  e.  Abel )
 )
 
Theoremablprop 13191 If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Abel  <->  L  e.  Abel )
 
Theoremiscmnd 13192* Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
 )  =  ( y 
 .+  x ) )   =>    |-  ( ph  ->  G  e. CMnd )
 
Theoremisabld 13193* Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
 )  =  ( y 
 .+  x ) )   =>    |-  ( ph  ->  G  e.  Abel
 )
 
Theoremisabli 13194* Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
 |-  G  e.  Grp   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  (
 ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  =  (
 y  .+  x )
 )   =>    |-  G  e.  Abel
 
Theoremcmnmnd 13195 A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e. CMnd  ->  G  e.  Mnd )
 
Theoremcmncom 13196 A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremablcom 13197 An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremcmn32 13198 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y ) 
 .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremcmn4 13199 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( Z 
 .+  W ) )  =  ( ( X 
 .+  Z )  .+  ( Y  .+  W ) ) )
 
Theoremcmn12 13200 Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( X 
 .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15186
  Copyright terms: Public domain < Previous  Next >