ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-tap Unicode version

Definition df-tap 7251
Description: Tight apartness predicate. A relation  R is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.)
Assertion
Ref Expression
df-tap  |-  ( R TAp 
A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R
y  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A   
x, R, y

Detailed syntax breakdown of Definition df-tap
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wtap 7250 . 2  wff  R TAp  A
41, 2wap 7248 . . 3  wff  R Ap  A
5 vx . . . . . . . . 9  setvar  x
65cv 1352 . . . . . . . 8  class  x
7 vy . . . . . . . . 9  setvar  y
87cv 1352 . . . . . . . 8  class  y
96, 8, 2wbr 4005 . . . . . . 7  wff  x R y
109wn 3 . . . . . 6  wff  -.  x R y
115, 7weq 1503 . . . . . 6  wff  x  =  y
1210, 11wi 4 . . . . 5  wff  ( -.  x R y  ->  x  =  y )
1312, 7, 1wral 2455 . . . 4  wff  A. y  e.  A  ( -.  x R y  ->  x  =  y )
1413, 5, 1wral 2455 . . 3  wff  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y )
154, 14wa 104 . 2  wff  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R y  ->  x  =  y ) )
163, 15wb 105 1  wff  ( R TAp 
A  <->  ( R Ap  A  /\  A. x  e.  A  A. y  e.  A  ( -.  x R
y  ->  x  =  y ) ) )
Colors of variables: wff set class
This definition is referenced by:  dftap2  7252
  Copyright terms: Public domain W3C validator