![]() |
Intuitionistic Logic Explorer Theorem List (p. 73 of 145) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | exmidaclem 7201* | Lemma for exmidac 7202. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidac 7202 | The axiom of choice implies excluded middle. See acexmid 5868 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
![]() ![]() ![]() ![]() | ||
Theorem | endjudisj 7203 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | djuen 7204 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | djuenun 7205 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dju1en 7206 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dju0en 7207 | Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xp2dju 7208 | Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | djucomen 7209 | Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | djuassen 7210 | Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xpdjuen 7211 | Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | djudoml 7212 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | djudomr 7213 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontriimlem1 7214 | Lemma for exmidontriim 7218. A variation of r19.30dc 2624. (Contributed by Jim Kingdon, 12-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontriimlem2 7215* | Lemma for exmidontriim 7218. (Contributed by Jim Kingdon, 12-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontriimlem3 7216* |
Lemma for exmidontriim 7218. What we get to do based on induction on
both
![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontriimlem4 7217* |
Lemma for exmidontriim 7218. The induction step for the induction on
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontriim 7218* | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pw1on 7219 |
The power set of ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | pw1dom2 7220 |
The power set of ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | pw1ne0 7221 |
The power set of ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | pw1ne1 7222 |
The power set of ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | pw1ne3 7223 |
The power set of ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | pw1nel3 7224 |
Negated excluded middle implies that the power set of ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | sucpw1ne3 7225 |
Negated excluded middle implies that the successor of the power set of
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | sucpw1nel3 7226 |
The successor of the power set of ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 3nelsucpw1 7227 |
Three is not an element of the successor of the power set of ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | sucpw1nss3 7228 |
Negated excluded middle implies that the successor of the power set of
![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 3nsssucpw1 7229 |
Negated excluded middle implies that ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri35 7230* |
Double negated ordinal trichotomy.
There are five equivalent statements: (1)
Another way of stating this is that EXMID is equivalent
to
trichotomy, either the (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri13 7231 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontri 7232* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri51 7233* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri45 7234* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri24 7235 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidontri2or 7236* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri52 7237* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri3or 7238* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onntri2or 7239* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | wtap 7240 | Tight apartness predicate symbol. |
![]() ![]() ![]() | ||
Definition | df-tap 7241* |
Tight apartness predicate. A relation ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | tapeq1 7242 | Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | tapeq2 7243 | Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | netap 7244* | Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2onetap 7245* |
Negated equality is a tight apartness on ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2oneel 7246* |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2omotaplemap 7247* | Lemma for 2omotap 7249. (Contributed by Jim Kingdon, 6-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2omotaplemst 7248* | Lemma for 2omotap 7249. (Contributed by Jim Kingdon, 6-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2omotap 7249 |
If there is at most one tight apartness on ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidapne 7250* | Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exmidmotap 7251* | The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
We have already introduced the full Axiom of Choice df-ac 7199 but since it implies excluded middle as shown at exmidac 7202, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle. | ||
Syntax | wacc 7252 | Formula for an abbreviation of countable choice. |
![]() | ||
Definition | df-cc 7253* | The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7199 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccfunen 7254* | Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc1 7255* | Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc2lem 7256* | Lemma for cc2 7257. (Contributed by Jim Kingdon, 27-Apr-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc2 7257* | Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc3 7258* | Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc4f 7259* |
Countable choice by showing the existence of a function ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc4 7260* |
Countable choice by showing the existence of a function ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cc4n 7261* |
Countable choice with a simpler restriction on how every set in the
countable collection needs to be inhabited. That is, compared with
cc4 7260, the hypotheses only require an A(n) for each
value of ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
This section derives the basics of real and complex numbers. To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6469 and similar theorems ), going from there to positive integers (df-ni 7294) and then positive rational numbers (df-nqqs 7338) does not involve a major change in approach compared with the Metamath Proof Explorer. It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero". When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7456. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 7922 and the MacNeille reals fail to satisfy axltwlin 8015, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson]. | ||
Syntax | cnpi 7262 |
The set of positive integers, which is the set of natural numbers ![]() Note: This is the start of the Dedekind-cut construction of real and complex numbers. |
![]() ![]() | ||
Syntax | cpli 7263 | Positive integer addition. |
![]() ![]() | ||
Syntax | cmi 7264 | Positive integer multiplication. |
![]() ![]() | ||
Syntax | clti 7265 | Positive integer ordering relation. |
![]() ![]() | ||
Syntax | cplpq 7266 | Positive pre-fraction addition. |
![]() ![]() | ||
Syntax | cmpq 7267 | Positive pre-fraction multiplication. |
![]() ![]() | ||
Syntax | cltpq 7268 | Positive pre-fraction ordering relation. |
![]() ![]() | ||
Syntax | ceq 7269 | Equivalence class used to construct positive fractions. |
![]() ![]() | ||
Syntax | cnq 7270 | Set of positive fractions. |
![]() ![]() | ||
Syntax | c1q 7271 | The positive fraction constant 1. |
![]() ![]() | ||
Syntax | cplq 7272 | Positive fraction addition. |
![]() ![]() | ||
Syntax | cmq 7273 | Positive fraction multiplication. |
![]() ![]() | ||
Syntax | crq 7274 | Positive fraction reciprocal operation. |
![]() ![]() | ||
Syntax | cltq 7275 | Positive fraction ordering relation. |
![]() ![]() | ||
Syntax | ceq0 7276 | Equivalence class used to construct nonnegative fractions. |
![]() | ||
Syntax | cnq0 7277 | Set of nonnegative fractions. |
![]() | ||
Syntax | c0q0 7278 | The nonnegative fraction constant 0. |
![]() | ||
Syntax | cplq0 7279 | Nonnegative fraction addition. |
![]() | ||
Syntax | cmq0 7280 | Nonnegative fraction multiplication. |
![]() | ||
Syntax | cnp 7281 | Set of positive reals. |
![]() ![]() | ||
Syntax | c1p 7282 | Positive real constant 1. |
![]() ![]() | ||
Syntax | cpp 7283 | Positive real addition. |
![]() ![]() | ||
Syntax | cmp 7284 | Positive real multiplication. |
![]() ![]() | ||
Syntax | cltp 7285 | Positive real ordering relation. |
![]() ![]() | ||
Syntax | cer 7286 | Equivalence class used to construct signed reals. |
![]() ![]() | ||
Syntax | cnr 7287 | Set of signed reals. |
![]() ![]() | ||
Syntax | c0r 7288 | The signed real constant 0. |
![]() ![]() | ||
Syntax | c1r 7289 | The signed real constant 1. |
![]() ![]() | ||
Syntax | cm1r 7290 | The signed real constant -1. |
![]() ![]() | ||
Syntax | cplr 7291 | Signed real addition. |
![]() ![]() | ||
Syntax | cmr 7292 | Signed real multiplication. |
![]() ![]() | ||
Syntax | cltr 7293 | Signed real ordering relation. |
![]() ![]() | ||
Definition | df-ni 7294 | Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-pli 7295 | Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-mi 7296 | Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-lti 7297 | Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elni 7298 | Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pinn 7299 | A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pion 7300 | A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |