HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 145)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexmidaclem 7201* Lemma for exmidac 7202. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }   &    |-  B  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  y  =  { (/) } ) }   &    |-  C  =  { A ,  B }   =>    |-  (CHOICE 
 -> EXMID )
 
Theoremexmidac 7202 The axiom of choice implies excluded middle. See acexmid 5868 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  (CHOICE 
 -> EXMID )
 
2.6.43  Cardinal number arithmetic
 
Theoremendjudisj 7203 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A B )  ~~  ( A  u.  B ) )
 
Theoremdjuen 7204 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A C ) 
 ~~  ( B D ) )
 
Theoremdjuenun 7205 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D ) )
 
Theoremdju1en 7206 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  -.  A  e.  A )  ->  ( A 1o )  ~~  suc  A )
 
Theoremdju0en 7207 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  V  ->  ( A (/) )  ~~  A )
 
Theoremxp2dju 7208 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( 2o  X.  A )  =  ( A A )
 
Theoremdjucomen 7209 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B ) 
 ~~  ( B A ) )
 
Theoremdjuassen 7210 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( ( A B ) C )  ~~  ( A ( B C ) ) )
 
Theoremxpdjuen 7211 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
 
Theoremdjudoml 7212 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
 
Theoremdjudomr 7213 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )
 
2.6.44  Ordinal trichotomy
 
Theoremexmidontriimlem1 7214 Lemma for exmidontriim 7218. A variation of r19.30dc 2624. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps 
 \/  ch )  /\ EXMID )  ->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps  \/  A. x  e.  A  ch ) )
 
Theoremexmidontriimlem2 7215* Lemma for exmidontriim 7218. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
 
Theoremexmidontriimlem3 7216* Lemma for exmidontriim 7218. What we get to do based on induction on both  A and  B. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
Theoremexmidontriimlem4 7217* Lemma for exmidontriim 7218. The induction step for the induction on  A. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
Theoremexmidontriim 7218* Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  (EXMID 
 ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2.6.45  Excluded middle and the power set of a singleton
 
Theorempw1on 7219 The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
 |- 
 ~P 1o  e.  On
 
Theorempw1dom2 7220 The power set of  1o dominates  2o. Also see pwpw0ss 3802 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
 |- 
 2o  ~<_  ~P 1o
 
Theorempw1ne0 7221 The power set of  1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  (/)
 
Theorempw1ne1 7222 The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  1o
 
Theorempw1ne3 7223 The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  3o
 
Theorempw1nel3 7224 Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
 
Theoremsucpw1ne3 7225 Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
 
Theoremsucpw1nel3 7226 The successor of the power set of 
1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  suc  ~P 1o  e.  3o
 
Theorem3nelsucpw1 7227 Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  3o  e.  suc  ~P 1o
 
Theoremsucpw1nss3 7228 Negated excluded middle implies that the successor of the power set of  1o is not a subset of  3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_ 
 3o )
 
Theorem3nsssucpw1 7229 Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
 
Theoremonntri35 7230* Double negated ordinal trichotomy.

There are five equivalent statements: (1)  -.  -.  A. x  e.  On A. y  e.  On ( x  e.  y  \/  x  =  y  \/  y  e.  x ), (2)  -.  -.  A. x  e.  On A. y  e.  On ( x  C_  y  \/  y  C_  x ), (3)  A. x  e.  On A. y  e.  On -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ), (4)  A. x  e.  On A. y  e.  On -.  -.  (
x  C_  y  \/  y  C_  x ), and (5)  -.  -. EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7231), (3) implies (5) (onntri35 7230), (5) implies (1) (onntri51 7233), (2) implies (4) (onntri24 7235), (4) implies (5) (onntri45 7234), and (5) implies (2) (onntri52 7237).

Another way of stating this is that EXMID is equivalent to trichotomy, either the  x  e.  y  \/  x  =  y  \/  y  e.  x or the  x  C_  y  \/  y  C_  x form, as shown in exmidontri 7232 and exmidontri2or 7236, respectively. Thus  -.  -. EXMID is equivalent to (1) or (2). In addition, 
-.  -. EXMID is equivalent to (3) by onntri3or 7238 and (4) by onntri2or 7239.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  -. EXMID )
 
Theoremonntri13 7231 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e. 
 On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremexmidontri 7232* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremonntri51 7233* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremonntri45 7234* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
 
Theoremonntri24 7235 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
Theoremexmidontri2or 7236* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
Theoremonntri52 7237* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
Theoremonntri3or 7238* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
 
Theoremonntri2or 7239* Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
 |-  ( -.  -. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
2.6.46  Apartness relations
 
Syntaxwtap 7240 Tight apartness predicate symbol.
 wff  R TAp  A
 
Definitiondf-tap 7241* Tight apartness predicate. A relation  R is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( R TAp  A  <->  ( R  C_  ( A  X.  A ) 
 /\  ( A. x  e.  A  -.  x R x  /\  A. x  e.  A  A. y  e.  A  ( x R y  ->  y R x ) )  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  y R z ) ) 
 /\  A. x  e.  A  A. y  e.  A  ( -.  x R y 
 ->  x  =  y
 ) ) ) )
 
Theoremtapeq1 7242 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |-  ( R  =  S  ->  ( R TAp  A  <->  S TAp  A )
 )
 
Theoremtapeq2 7243 Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.)
 |-  ( A  =  B  ->  ( R TAp  A  <->  R TAp  B )
 )
 
Theoremnetap 7244* Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.)
 |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } TAp  A )
 
Theorem2onetap 7245* Negated equality is a tight apartness on  2o. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |- 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) } TAp  2o
 
Theorem2oneel 7246*  (/) and  1o are two unequal elements of  2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
 |- 
 <. (/) ,  1o >.  e. 
 { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v ) }
 
Theorem2omotaplemap 7247* Lemma for 2omotap 7249. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( -.  -.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
 ) ) } TAp  2o )
 
Theorem2omotaplemst 7248* Lemma for 2omotap 7249. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( ( E* r  r TAp  2o  /\  -.  -.  ph )  ->  ph )
 
Theorem2omotap 7249 If there is at most one tight apartness on  2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
 |-  ( E* r  r TAp 
 2o  -> EXMID
 )
 
Theoremexmidapne 7250* Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID 
 ->  ( R TAp  A  <->  R  =  { <. u ,  v >.  |  ( ( u  e.  A  /\  v  e.  A )  /\  u  =/=  v ) } )
 )
 
Theoremexmidmotap 7251* The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
 |-  (EXMID  <->  A. x E* r  r TAp 
 x )
 
PART 3  CHOICE PRINCIPLES

We have already introduced the full Axiom of Choice df-ac 7199 but since it implies excluded middle as shown at exmidac 7202, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle.

 
3.1  Countable Choice and Dependent Choice
 
3.1.1  Introduce Countable Choice
 
Syntaxwacc 7252 Formula for an abbreviation of countable choice.
 wff CCHOICE
 
Definitiondf-cc 7253* The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7199 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
 |-  (CCHOICE  <->  A. x ( dom  x  ~~ 
 om  ->  E. f ( f 
 C_  x  /\  f  Fn  dom  x ) ) )
 
Theoremccfunen 7254* Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A 
 ~~  om )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
Theoremcc1 7255* Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  (CCHOICE 
 ->  A. x ( ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
 )  ->  E. f A. z  e.  x  ( f `  z
 )  e.  z ) )
 
Theoremcc2lem 7256* Lemma for cc2 7257. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   &    |-  A  =  ( n  e.  om  |->  ( { n }  X.  ( F `  n ) ) )   &    |-  G  =  ( n  e.  om  |->  ( 2nd `  (
 f `  ( A `  n ) ) ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
Theoremcc2 7257* Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  F  Fn  om )   &    |-  ( ph  ->  A. x  e.  om  E. w  w  e.  ( F `  x ) )   =>    |-  ( ph  ->  E. g
 ( g  Fn  om  /\ 
 A. n  e.  om  ( g `  n )  e.  ( F `  n ) ) )
 
Theoremcc3 7258* Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  F  e.  _V )   &    |-  ( ph  ->  A. n  e.  N  E. w  w  e.  F )   &    |-  ( ph  ->  N  ~~ 
 om )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  F )
 )
 
Theoremcc4f 7259* Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  F/_ n A   &    |-  ( ph  ->  N  ~~ 
 om )   &    |-  ( x  =  ( f `  n )  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
Theoremcc4 7260* Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
Theoremcc4n 7261* Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7260, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ch ) )
 
PART 4  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6469 and similar theorems ), going from there to positive integers (df-ni 7294) and then positive rational numbers (df-nqqs 7338) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7456. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 7922 and the MacNeille reals fail to satisfy axltwlin 8015, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson].

 
4.1  Construction and axiomatization of real and complex numbers
 
4.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 7262 The set of positive integers, which is the set of natural numbers  om with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and complex numbers.

 class  N.
 
Syntaxcpli 7263 Positive integer addition.
 class  +N
 
Syntaxcmi 7264 Positive integer multiplication.
 class  .N
 
Syntaxclti 7265 Positive integer ordering relation.
 class  <N
 
Syntaxcplpq 7266 Positive pre-fraction addition.
 class  +pQ
 
Syntaxcmpq 7267 Positive pre-fraction multiplication.
 class  .pQ
 
Syntaxcltpq 7268 Positive pre-fraction ordering relation.
 class  <pQ
 
Syntaxceq 7269 Equivalence class used to construct positive fractions.
 class  ~Q
 
Syntaxcnq 7270 Set of positive fractions.
 class  Q.
 
Syntaxc1q 7271 The positive fraction constant 1.
 class  1Q
 
Syntaxcplq 7272 Positive fraction addition.
 class  +Q
 
Syntaxcmq 7273 Positive fraction multiplication.
 class  .Q
 
Syntaxcrq 7274 Positive fraction reciprocal operation.
 class  *Q
 
Syntaxcltq 7275 Positive fraction ordering relation.
 class  <Q
 
Syntaxceq0 7276 Equivalence class used to construct nonnegative fractions.
 class ~Q0
 
Syntaxcnq0 7277 Set of nonnegative fractions.
 class Q0
 
Syntaxc0q0 7278 The nonnegative fraction constant 0.
 class 0Q0
 
Syntaxcplq0 7279 Nonnegative fraction addition.
 class +Q0
 
Syntaxcmq0 7280 Nonnegative fraction multiplication.
 class ·Q0
 
Syntaxcnp 7281 Set of positive reals.
 class  P.
 
Syntaxc1p 7282 Positive real constant 1.
 class  1P
 
Syntaxcpp 7283 Positive real addition.
 class  +P.
 
Syntaxcmp 7284 Positive real multiplication.
 class  .P.
 
Syntaxcltp 7285 Positive real ordering relation.
 class  <P
 
Syntaxcer 7286 Equivalence class used to construct signed reals.
 class  ~R
 
Syntaxcnr 7287 Set of signed reals.
 class  R.
 
Syntaxc0r 7288 The signed real constant 0.
 class  0R
 
Syntaxc1r 7289 The signed real constant 1.
 class  1R
 
Syntaxcm1r 7290 The signed real constant -1.
 class  -1R
 
Syntaxcplr 7291 Signed real addition.
 class  +R
 
Syntaxcmr 7292 Signed real multiplication.
 class  .R
 
Syntaxcltr 7293 Signed real ordering relation.
 class  <R
 
Definitiondf-ni 7294 Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.)
 |- 
 N.  =  ( om  \  { (/) } )
 
Definitiondf-pli 7295 Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 +N  =  (  +o  |`  ( N.  X.  N. ) )
 
Definitiondf-mi 7296 Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 .N  =  (  .o  |`  ( N.  X.  N. ) )
 
Definitiondf-lti 7297 Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.)
 |- 
 <N  =  (  _E  i^i  ( N.  X.  N. ) )
 
Theoremelni 7298 Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/= 
 (/) ) )
 
Theorempinn 7299 A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  ->  A  e.  om )
 
Theorempion 7300 A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
 |-  ( A  e.  N.  ->  A  e.  On )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14485
  Copyright terms: Public domain < Previous  Next >