HomeHome Intuitionistic Logic Explorer
Theorem List (p. 73 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdifinfsn 7201* An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  B  e.  A )  ->  om  ~<_  ( A 
 \  { B }
 ) )
 
Theoremdifinfinf 7202* An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
 |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
 ~<_  ( A  \  B ) )
 
2.6.36.5  Older definition temporarily kept for comparison, to be deleted
 
Syntaxcdjud 7203 Syntax for the domain-disjoint-union of two relations.
 class  ( R ⊔d  S )
 
Definitiondf-djud 7204 The "domain-disjoint-union" of two relations: if  R  C_  ( A  X.  X
) and  S  C_  ( B  X.  X ) are two binary relations, then  ( R ⊔d  S ) is the binary relation from  ( A B ) to  X having the universal property of disjoint unions (see updjud 7183 in the case of functions).

Remark: the restrictions to 
dom  R (resp.  dom  S) are not necessary since extra stuff would be thrown away in the post-composition with  R (resp.  S), as in df-case 7185, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.)

 |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S ) ) )
 
Theoremdjufun 7205 The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  Fun  G )   =>    |-  ( ph  ->  Fun  ( F ⊔d  G ) )
 
Theoremdjudm 7206 The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
 |- 
 dom  ( F ⊔d  G )  =  ( dom  F dom 
 G )
 
Theoremdjuinj 7207 The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  Fun  `' R )   &    |-  ( ph  ->  Fun  `' S )   &    |-  ( ph  ->  ( ran  R  i^i  ran  S )  =  (/) )   =>    |-  ( ph  ->  Fun  `' ( R ⊔d  S )
 )
 
2.6.36.6  Countable sets
 
Theorem0ct 7208 The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |- 
 E. f  f : om -onto-> ( (/) 1o )
 
Theoremctmlemr 7209* Lemma for ctm 7210. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
 |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> A  ->  E. f  f : om -onto-> ( A 1o ) ) )
 
Theoremctm 7210* Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |-  ( E. x  x  e.  A  ->  ( E. f  f : om -onto-> ( A 1o )  <->  E. f  f : om -onto-> A ) )
 
Theoremctssdclemn0 7211* Lemma for ctssdc 7214. The  -.  (/)  e.  S case. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( ph  ->  S  C_ 
 om )   &    |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )   &    |-  ( ph  ->  F : S -onto-> A )   &    |-  ( ph  ->  -.  (/)  e.  S )   =>    |-  ( ph  ->  E. g  g : om -onto-> ( A 1o ) )
 
Theoremctssdccl 7212* A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7214 but expressed in terms of classes rather than  E.. (Contributed by Jim Kingdon, 30-Oct-2023.)
 |-  ( ph  ->  F : om -onto-> ( A 1o )
 )   &    |-  S  =  { x  e.  om  |  ( F `
  x )  e.  (inl " A ) }   &    |-  G  =  ( `'inl  o.  F )   =>    |-  ( ph  ->  ( S  C_  om  /\  G : S -onto-> A  /\  A. n  e.  om DECID  n  e.  S ) )
 
Theoremctssdclemr 7213* Lemma for ctssdc 7214. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  E. s
 ( s  C_  om  /\  E. f  f : s
 -onto-> A  /\  A. n  e.  om DECID  n  e.  s ) )
 
Theoremctssdc 7214* A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7251. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( E. s ( s  C_  om  /\  E. f  f : s -onto-> A 
 /\  A. n  e.  om DECID  n  e.  s )  <->  E. f  f : om -onto-> ( A 1o )
 )
 
Theoremenumctlemm 7215* Lemma for enumct 7216. The case where  N is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |-  ( ph  ->  F : N -onto-> A )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  (/)  e.  N )   &    |-  G  =  ( k  e.  om  |->  if ( k  e.  N ,  ( F `
  k ) ,  ( F `  (/) ) ) )   =>    |-  ( ph  ->  G : om -onto-> A )
 
Theoremenumct 7216* A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
 |-  ( E. n  e. 
 om  E. f  f : n -onto-> A  ->  E. g  g : om -onto-> ( A 1o ) )
 
Theoremfinct 7217* A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.)
 |-  ( A  e.  Fin  ->  E. g  g : om -onto-> ( A 1o )
 )
 
Theoremomct 7218  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
 |- 
 E. f  f : om -onto-> ( om 1o )
 
Theoremctfoex 7219* A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
 |-  ( E. f  f : om -onto-> ( A 1o )  ->  A  e.  _V )
 
2.6.37  The one-point compactification of the natural numbers

This section introduces the one-point compactification of the set of natural numbers, introduced by Escardo as the set of nonincreasing sequences on  om with values in  2o. The topological results justifying its name will be proved later.

 
Syntaxxnninf 7220 Set of nonincreasing sequences in 
2o  ^m  om.
 class
 
Definitiondf-nninf 7221* Define the set of nonincreasing sequences in  2o 
^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9358 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6515) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
 |-  =  { f  e.  ( 2o  ^m  om )  | 
 A. i  e.  om  ( f `  suc  i )  C_  ( f `
  i ) }
 
Theoremnninfex 7222 is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
 |-  e.  _V
 
Theoremnninff 7223 An element of ℕ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
 |-  ( A  e.  ->  A : om --> 2o )
 
Theoremnninfninc 7224 All values beyond a zero in an ℕ sequence are zero. This is another way of stating that elements of ℕ are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
 |-  ( ph  ->  A  e. )   &    |-  ( ph  ->  X  e.  om )   &    |-  ( ph  ->  Y  e.  om )   &    |-  ( ph  ->  X  C_  Y )   &    |-  ( ph  ->  ( A `  X )  =  (/) )   =>    |-  ( ph  ->  ( A `  Y )  =  (/) )
 
Theoreminfnninf 7225 The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4721 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
 |-  ( i  e.  om  |->  1o )  e.
 
TheoreminfnninfOLD 7226 Obsolete version of infnninf 7225 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( om  X.  { 1o } )  e.
 
Theoremnnnninf 7227* Elements of ℕ corresponding to natural numbers. The natural number  N corresponds to a sequence of  N ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7228. (Contributed by Jim Kingdon, 14-Jul-2022.)
 |-  ( N  e.  om  ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e. )
 
Theoremnnnninf2 7228* Canonical embedding of  suc  om into ℕ. (Contributed by BJ, 10-Aug-2024.)
 |-  ( N  e.  suc  om 
 ->  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e. )
 
Theoremnnnninfeq 7229* Mapping of a natural number to an element of ℕ. (Contributed by Jim Kingdon, 4-Aug-2022.)
 |-  ( ph  ->  P  e. )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  A. x  e.  N  ( P `  x )  =  1o )   &    |-  ( ph  ->  ( P `  N )  =  (/) )   =>    |-  ( ph  ->  P  =  ( i  e. 
 om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
 
Theoremnnnninfeq2 7230* Mapping of a natural number to an element of ℕ. Similar to nnnninfeq 7229 but if we have information about a single  1o digit, that gives information about all previous digits. (Contributed by Jim Kingdon, 4-Aug-2022.)
 |-  ( ph  ->  P  e. )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  ( P `  U. N )  =  1o )   &    |-  ( ph  ->  ( P `  N )  =  (/) )   =>    |-  ( ph  ->  P  =  ( i  e. 
 om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
 
Theoremnninfisollem0 7231* Lemma for nninfisol 7234. The case where  N is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =  (/) )   =>    |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
Theoremnninfisollemne 7232* Lemma for nninfisol 7234. A case where  N is a successor and  N and  X are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =/=  (/) )   &    |-  ( ph  ->  ( X `  U. N )  =  (/) )   =>    |-  ( ph  -> DECID  ( i  e.  om  |->  if (
 i  e.  N ,  1o ,  (/) ) )  =  X )
 
Theoremnninfisollemeq 7233* Lemma for nninfisol 7234. The case where  N is a successor and  N and  X are equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
 |-  ( ph  ->  X  e. )   &    |-  ( ph  ->  ( X `  N )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  N  =/=  (/) )   &    |-  ( ph  ->  ( X `  U. N )  =  1o )   =>    |-  ( ph  -> DECID 
 ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
Theoremnninfisol 7234* Finite elements of ℕ are isolated. That is, given a natural number and any element of ℕ, it is decidable whether the natural number (when converted to an element of ℕ) is equal to the given element of ℕ. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence  X to decide whether it is equal to  N (in fact, you only need to look at two elements and  N tells you where to look).

By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7281). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)

 |-  ( ( N  e.  om 
 /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
 
2.6.38  Omniscient sets
 
Syntaxcomni 7235 Extend class definition to include the class of omniscient sets.
 class Omni
 
Definitiondf-omni 7236* An omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or fails to hold (is equal to  (/)) for some element. Definition 3.1 of [Pierik], p. 14.

In particular,  om  e. Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.)

 |- Omni  =  { y  |  A. f ( f : y --> 2o  ->  ( E. x  e.  y  (
 f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) ) }
 
Theoremisomni 7237* The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
 |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  (
 f `  x )  =  1o ) ) ) )
 
Theoremisomnimap 7238* The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  (
 f `  x )  =  1o ) ) )
 
Theoremenomnilem 7239 Lemma for enomni 7240. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  ~~  B  ->  ( A  e. Omni  ->  B  e. Omni ) )
 
Theoremenomni 7240 Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either  om  e. Omni or  NN0  e. Omni. The former is a better match to conventional notation in the sense that df2o3 6515 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  ~~  B  ->  ( A  e. Omni  <->  B  e. Omni ) )
 
Theoremfinomni 7241 A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
 |-  ( A  e.  Fin  ->  A  e. Omni )
 
Theoremexmidomniim 7242 Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7243. (Contributed by Jim Kingdon, 29-Jun-2022.)
 |-  (EXMID 
 ->  A. x  x  e. Omni
 )
 
Theoremexmidomni 7243 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
 |-  (EXMID  <->  A. x  x  e. Omni )
 
Theoremexmidlpo 7244 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
 |-  (EXMID 
 ->  om  e. Omni )
 
Theoremfodjuomnilemdc 7245* Lemma for fodjuomni 7250. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   =>    |-  ( ( ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
 ) )
 
Theoremfodjuf 7246* Lemma for fodjuomni 7250 and fodjumkv 7261. Domain and range of  P. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  O  e.  V )   =>    |-  ( ph  ->  P  e.  ( 2o  ^m  O ) )
 
Theoremfodjum 7247* Lemma for fodjuomni 7250 and fodjumkv 7261. A condition which shows that  A is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )   =>    |-  ( ph  ->  E. x  x  e.  A )
 
Theoremfodju0 7248* Lemma for fodjuomni 7250 and fodjumkv 7261. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )   =>    |-  ( ph  ->  A  =  (/) )
 
Theoremfodjuomnilemres 7249* Lemma for fodjuomni 7250. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
 |-  ( ph  ->  O  e. Omni )   &    |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   =>    |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
 
Theoremfodjuomni 7250* A condition which ensures  A is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
 |-  ( ph  ->  O  e. Omni )   &    |-  ( ph  ->  F : O -onto-> ( A B ) )   =>    |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
 
Theoremctssexmid 7251* The decidability condition in ctssdc 7214 is needed. More specifically, ctssdc 7214 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( ( y  C_  om 
 /\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )   &    |-  om  e. Omni   =>    |-  ( ph  \/  -.  ph )
 
2.6.39  Markov's principle
 
Syntaxcmarkov 7252 Extend class definition to include the class of Markov sets.
 class Markov
 
Definitiondf-markov 7253* A Markov set is one where if a predicate (here represented by a function  f) on that set does not hold (where hold means is equal to  1o) for all elements, then there exists an element where it fails (is equal to  (/)). Generalization of definition 2.5 of [Pierik], p. 9.

In particular,  om  e. Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -. 
 A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
 
Theoremismkv 7254* The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
 
Theoremismkvmap 7255* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
 
Theoremismkvnex 7256* The predicate of being Markov stated in terms of double negation and comparison with  1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )
 ) )
 
Theoremomnimkv 7257 An omniscient set is Markov. In particular, the case where  A is  om means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e. Omni  ->  A  e. Markov )
 
Theoremexmidmp 7258 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
 |-  (EXMID 
 ->  om  e. Markov )
 
Theoremmkvprop 7259* Markov's Principle expressed in terms of propositions (or more precisely, the  A  =  om case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
 |-  ( ( A  e. Markov  /\ 
 A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  E. n  e.  A  ph )
 
Theoremfodjumkvlemres 7260* Lemma for fodjumkv 7261. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  M  e. Markov )   &    |-  ( ph  ->  F : M -onto-> ( A B ) )   &    |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   =>    |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
 )
 
Theoremfodjumkv 7261* A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  M  e. Markov )   &    |-  ( ph  ->  F : M -onto-> ( A B ) )   =>    |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
 )
 
Theoremenmkvlem 7262 Lemma for enmkv 7263. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  ->  B  e. Markov ) )
 
Theoremenmkv 7263 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6515 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
 
2.6.40  Weakly omniscient sets
 
Syntaxcwomni 7264 Extend class definition to include the class of weakly omniscient sets.
 class WOmni
 
Definitiondf-womni 7265* A weakly omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular,  om  e. WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x )  =  1o ) }
 
Theoremiswomni 7266* The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
 
Theoremiswomnimap 7267* The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1o ) )
 
Theoremomniwomnimkv 7268 A set is omniscient if and only if it is weakly omniscient and Markov. The case  A  =  om says that LPO  <-> WLPO  /\ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e. Omni  <->  ( A  e. WOmni  /\  A  e. Markov ) )
 
Theoremlpowlpo 7269 LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7268. There is an analogue in terms of analytic omniscience principles at tridceq 15928. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( om  e. Omni  ->  om  e. WOmni )
 
Theoremenwomnilem 7270 Lemma for enwomni 7271. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni ) )
 
Theoremenwomni 7271 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either  om  e. WOmni or  NN0  e. WOmni. The former is a better match to conventional notation in the sense that df2o3 6515 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )
 
Theoremnninfdcinf 7272* The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( ph  ->  om  e. WOmni )   &    |-  ( ph  ->  N  e. )   =>    |-  ( ph  -> DECID  N  =  ( i  e.  om  |->  1o ) )
 
Theoremnninfwlporlemd 7273* Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   =>    |-  ( ph  ->  ( X  =  Y  <->  D  =  (
 i  e.  om  |->  1o ) ) )
 
Theoremnninfwlporlem 7274* Lemma for nninfwlpor 7275. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( ph  ->  X : om --> 2o )   &    |-  ( ph  ->  Y : om --> 2o )   &    |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )   &    |-  ( ph  ->  om  e. WOmni )   =>    |-  ( ph  -> DECID  X  =  Y )
 
Theoremnninfwlpor 7275* The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
 |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
 
Theoremnninfwlpoimlemg 7276* Lemma for nninfwlpoim 7280. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  G  e. )
 
Theoremnninfwlpoimlemginf 7277* Lemma for nninfwlpoim 7280. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   =>    |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
 
Theoremnninfwlpoimlemdc 7278* Lemma for nninfwlpoim 7280. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
Theoremnninfinfwlpolem 7279* Lemma for nninfinfwlpo 7281. (Contributed by Jim Kingdon, 8-Dec-2024.)
 |-  ( ph  ->  F : om --> 2o )   &    |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
 suc  i ( F `
  x )  =  (/) ,  (/) ,  1o )
 )   &    |-  ( ph  ->  A. x  e. DECID  x  =  ( i  e.  om  |->  1o ) )   =>    |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
 
Theoremnninfwlpoim 7280* Decidable equality for ℕ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  om  e. WOmni )
 
Theoremnninfinfwlpo 7281* The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7234). (Contributed by Jim Kingdon, 25-Nov-2025.)
 |-  ( A. x  e. DECID  x  =  (
 i  e.  om  |->  1o )  <->  om  e. WOmni )
 
Theoremnninfwlpo 7282* Decidability of equality for ℕ is equivalent to the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 3-Dec-2024.)
 |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  om  e. WOmni )
 
2.6.41  Cardinal numbers
 
Syntaxccrd 7283 Extend class definition to include the cardinal size function.
 class  card
 
Syntaxwacn 7284 The axiom of choice for limited-length sequences.
 class AC  A
 
Definitiondf-card 7285* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
 |- 
 card  =  ( x  e.  _V  |->  |^| { y  e. 
 On  |  y  ~~  x } )
 
Definitiondf-acnm 7286* Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
 |- AC  A  =  { x  |  ( A  e.  _V  /\ 
 A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y
 )  e.  ( f `
  y ) ) }
 
Theoremcardcl 7287* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. y  e. 
 On  y  ~~  A  ->  ( card `  A )  e.  On )
 
Theoremisnumi 7288 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card
 )
 
Theoremfinnum 7289 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  Fin  ->  A  e.  dom  card )
 
Theoremonenon 7290 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  On  ->  A  e.  dom  card )
 
Theoremcardval3ex 7291* The value of  ( card `  A
). (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e. 
 On  |  y  ~~  A } )
 
Theoremoncardval 7292* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  ( A  e.  On  ->  ( card `  A )  =  |^| { x  e. 
 On  |  x  ~~  A } )
 
Theoremcardonle 7293 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
 |-  ( A  e.  On  ->  ( card `  A )  C_  A )
 
Theoremcard0 7294 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
 |-  ( card `  (/) )  =  (/)
 
Theoremficardon 7295 The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.)
 |-  ( A  e.  Fin  ->  ( card `  A )  e.  On )
 
Theoremcarden2bex 7296* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  ~~  B  /\  E. x  e. 
 On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B ) )
 
Theorempm54.43 7297 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
 |-  ( ( A  ~~  1o  /\  B  ~~  1o )  ->  ( ( A  i^i  B )  =  (/) 
 <->  ( A  u.  B )  ~~  2o ) )
 
Theorempr2nelem 7298 Lemma for pr2ne 7299. (Contributed by FL, 17-Aug-2008.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B ) 
 ->  { A ,  B }  ~~  2o )
 
Theorempr2ne 7299 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
 
Theoremexmidonfinlem 7300* Lemma for exmidonfin 7301. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >