ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-trls Unicode version

Definition df-trls 16100
Description: Define the set of all Trails (in an undirected graph).

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A trail is a walk in which all edges are distinct.

According to Bollobas: "... walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5.

Therefore, a trail can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the trail is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Assertion
Ref Expression
df-trls  |- Trails  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Walks `  g ) p  /\  Fun  `' f ) } )
Distinct variable group:    f, g, p

Detailed syntax breakdown of Definition df-trls
StepHypRef Expression
1 ctrls 16099 . 2  class Trails
2 vg . . 3  setvar  g
3 cvv 2799 . . 3  class  _V
4 vf . . . . . . 7  setvar  f
54cv 1394 . . . . . 6  class  f
6 vp . . . . . . 7  setvar  p
76cv 1394 . . . . . 6  class  p
82cv 1394 . . . . . . 7  class  g
9 cwlks 16038 . . . . . . 7  class Walks
108, 9cfv 5318 . . . . . 6  class  (Walks `  g )
115, 7, 10wbr 4083 . . . . 5  wff  f (Walks `  g ) p
125ccnv 4718 . . . . . 6  class  `' f
1312wfun 5312 . . . . 5  wff  Fun  `' f
1411, 13wa 104 . . . 4  wff  ( f (Walks `  g )
p  /\  Fun  `' f )
1514, 4, 6copab 4144 . . 3  class  { <. f ,  p >.  |  ( f (Walks `  g
) p  /\  Fun  `' f ) }
162, 3, 15cmpt 4145 . 2  class  ( g  e.  _V  |->  { <. f ,  p >.  |  ( f (Walks `  g
) p  /\  Fun  `' f ) } )
171, 16wceq 1395 1  wff Trails  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Walks `  g ) p  /\  Fun  `' f ) } )
Colors of variables: wff set class
This definition is referenced by:  reltrls  16101  trlsfvalg  16102  trlsv  16103
  Copyright terms: Public domain W3C validator