HomeHome Intuitionistic Logic Explorer
Theorem List (p. 160 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15901-16000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremumgrfen 15901* The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfnen 15902 without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  E : dom  E --> { x  e.  ~P V  |  x  ~~ 
 2o } )
 
Theoremumgrfnen 15902* The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UMGraph  /\  E  Fn  A ) 
 ->  E : A --> { x  e.  ~P V  |  x  ~~ 
 2o } )
 
Theoremumgredg2en 15903 An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UMGraph  /\  X  e.  dom  E )  ->  ( E `  X )  ~~  2o )
 
Theoremumgrbien 15904* Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.)
 |-  X  e.  V   &    |-  Y  e.  V   &    |-  X  =/=  Y   =>    |-  { X ,  Y }  e.  { x  e.  ~P V  |  x  ~~  2o }
 
Theoremupgruhgr 15905 An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.)
 |-  ( G  e. UPGraph  ->  G  e. UHGraph )
 
Theoremumgrupgr 15906 An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.)
 |-  ( G  e. UMGraph  ->  G  e. UPGraph )
 
Theoremumgruhgr 15907 An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.)
 |-  ( G  e. UMGraph  ->  G  e. UHGraph )
 
Theoremumgrnloopv 15908 In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. UMGraph  /\  M  e.  W ) 
 ->  ( ( E `  X )  =  { M ,  N }  ->  M  =/=  N ) )
 
Theoremumgredgprv 15909 In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either  M or  N could be proper classes ( ( E `  X ) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   =>    |-  ( ( G  e. UMGraph  /\  X  e.  dom  E )  ->  ( ( E `
  X )  =  { M ,  N }  ->  ( M  e.  V  /\  N  e.  V ) ) )
 
Theoremumgrnloop 15910* In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  ( E. x  e.  dom  E ( E `  x )  =  { M ,  N }  ->  M  =/=  N ) )
 
Theoremumgrnloop0 15911* A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  { x  e.  dom  E  |  ( E `  x )  =  { U } }  =  (/) )
 
Theoremumgr0e 15912 The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  (iEdg `  G )  =  (/) )   =>    |-  ( ph  ->  G  e. UMGraph )
 
Theoremupgr0e 15913 The empty graph, with vertices but no edges, is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  (iEdg `  G )  =  (/) )   =>    |-  ( ph  ->  G  e. UPGraph )
 
Theoremupgr1elem1 15914* Lemma for upgr1edc 15915. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.)
 |-  ( ph  ->  { B ,  C }  e.  S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  -> DECID  B  =  C )   =>    |-  ( ph  ->  { { B ,  C } }  C_  { x  e.  S  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
Theoremupgr1edc 15915 A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  -> DECID  B  =  C )   &    |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )   =>    |-  ( ph  ->  G  e. UPGraph )
 
Theoremupgr0eop 15916 The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, and therefore also a multigraph ( G  e. UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.)
 |-  ( V  e.  W  -> 
 <. V ,  (/) >.  e. UPGraph )
 
Theoremupgr1eopdc 15917 A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
 |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  -> DECID  B  =  C )   =>    |-  ( ph  ->  <. V ,  { <. A ,  { B ,  C } >. } >.  e. UPGraph )
 
Theoremupgrun 15918 The union  U of two pseudographs  G and  H with the same vertex set  V is a pseudograph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. UPGraph )   &    |-  ( ph  ->  H  e. UPGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UPGraph )
 
Theoremupgrunop 15919 The union of two pseudographs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are pseudographs, then  <. V ,  E  u.  F >. is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. UPGraph )   &    |-  ( ph  ->  H  e. UPGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UPGraph )
 
Theoremumgrun 15920 The union  U of two multigraphs  G and  H with the same vertex set  V is a multigraph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e. UMGraph )   &    |-  ( ph  ->  H  e. UMGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UMGraph )
 
Theoremumgrunop 15921 The union of two multigraphs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are multigraphs, then  <. V ,  E  u.  F >. is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e. UMGraph )   &    |-  ( ph  ->  H  e. UMGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UMGraph )
 
12.2.3  Loop-free graphs

For a hypergraph, the property to be "loop-free" is expressed by  I : dom  I --> E with  E  =  { x  e.  ~P V  |  2o  ~<_  x } and  I  =  (iEdg `  G ).  E is the set of edges which connect at least two vertices.

 
Theoremumgrislfupgrenlem 15922 Lemma for umgrislfupgrdom 15923. (Contributed by AV, 27-Jan-2021.)
 |-  ( { x  e. 
 ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x }
 )  =  { x  e.  ~P V  |  x  ~~ 
 2o }
 
Theoremumgrislfupgrdom 15923* A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  <->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x }
 ) )
 
Theoremlfgredg2dom 15924* An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  A  =  dom  I   &    |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }   =>    |-  ( ( I : A
 --> E  /\  X  e.  A )  ->  2o  ~<_  ( I `
  X ) )
 
Theoremlfgrnloopen 15925* A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  A  =  dom  I   &    |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }   =>    |-  ( I : A --> E  ->  { x  e.  A  |  ( I `
  x )  ~~  1o }  =  (/) )
 
12.2.4  Edges as subsets of vertices of graphs
 
Theoremuhgredgiedgb 15926* In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.)
 |-  I  =  (iEdg `  G )   =>    |-  ( G  e. UHGraph  ->  ( E  e.  (Edg `  G ) 
 <-> 
 E. x  e.  dom  I  E  =  ( I `
  x ) ) )
 
Theoremuhgriedg0edg0 15927 A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.)
 |-  ( G  e. UHGraph  ->  (
 (Edg `  G )  =  (/)  <->  (iEdg `  G )  =  (/) ) )
 
Theoremuhgredgm 15928* An edge of a hypergraph is an inhabited subset of vertices. (Contributed by AV, 28-Nov-2020.)
 |-  ( ( G  e. UHGraph  /\  E  e.  (Edg `  G ) )  ->  ( E  e.  ~P (Vtx `  G )  /\  E. x  x  e.  E ) )
 
Theoremedguhgr 15929 An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.)
 |-  ( ( G  e. UHGraph  /\  E  e.  (Edg `  G ) )  ->  E  e.  ~P (Vtx `  G ) )
 
Theoremuhgredgrnv 15930 An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 4-Jun-2021.)
 |-  ( ( G  e. UHGraph  /\  E  e.  (Edg `  G )  /\  N  e.  E )  ->  N  e.  (Vtx `  G ) )
 
Theoremupgredgssen 15931* The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.)
 |-  ( G  e. UPGraph  ->  (Edg `  G )  C_  { x  e.  ~P (Vtx `  G )  |  ( x  ~~ 
 1o  \/  x  ~~  2o ) } )
 
Theoremumgredgssen 15932* The set of edges of a multigraph is a subset of the set of proper unordered pairs of vertices. (Contributed by AV, 25-Nov-2020.)
 |-  ( G  e. UMGraph  ->  (Edg `  G )  C_  { x  e.  ~P (Vtx `  G )  |  x  ~~  2o } )
 
Theoremedgupgren 15933 Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
 |-  ( ( G  e. UPGraph  /\  E  e.  (Edg `  G ) )  ->  ( E  e.  ~P (Vtx `  G )  /\  ( E  ~~  1o  \/  E  ~~  2o ) ) )
 
Theoremedgumgren 15934 Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020.)
 |-  ( ( G  e. UMGraph  /\  E  e.  (Edg `  G ) )  ->  ( E  e.  ~P (Vtx `  G )  /\  E  ~~  2o ) )
 
Theoremuhgrvtxedgiedgb 15935* In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UHGraph  /\  U  e.  V ) 
 ->  ( E. i  e. 
 dom  I  U  e.  ( I `  i )  <->  E. e  e.  E  U  e.  e )
 )
 
Theoremupgredg 15936* For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UPGraph  /\  C  e.  E ) 
 ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
 
Theoremumgredg 15937* For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UMGraph  /\  C  e.  E ) 
 ->  E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  C  =  { a ,  b } ) )
 
Theoremupgrpredgv 15938 An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W ) 
 /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V ) )
 
Theoremumgrpredgv 15939 An edge of a multigraph always connects two vertices. This theorem does not hold for arbitrary pseudographs: if either  M or  N is a proper class, then  { M ,  N }  e.  E could still hold ( { M ,  N } would be either  { M } or  { N }, see prprc1 3774 or prprc2 3775, i.e. a loop), but  M  e.  V or  N  e.  V would not be true. (Contributed by AV, 27-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UMGraph  /\ 
 { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V ) )
 
Theoremupgredg2vtx 15940* For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UPGraph  /\  C  e.  E  /\  A  e.  C )  ->  E. b  e.  V  C  =  { A ,  b } )
 
Theoremupgredgpr 15941 If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. UPGraph  /\  C  e.  E  /\  { A ,  B }  C_  C )  /\  ( A  e.  U  /\  B  e.  W  /\  A  =/=  B ) ) 
 ->  { A ,  B }  =  C )
 
Theoremumgredgne 15942 An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv 15908. (Contributed by AV, 27-Nov-2020.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UMGraph  /\ 
 { M ,  N }  e.  E )  ->  M  =/=  N )
 
Theoremumgrnloop2 15943 A multigraph has no loops. (Contributed by AV, 27-Oct-2020.) (Revised by AV, 30-Nov-2020.)
 |-  ( G  e. UMGraph  ->  { N ,  N }  e/  (Edg `  G ) )
 
Theoremumgredgnlp 15944* An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UMGraph  /\  C  e.  E ) 
 ->  -.  E. v  C  =  { v }
 )
 
12.2.5  Undirected simple graphs

In this section, "simple graph" will always stand for "undirected simple graph (without loops)" and "simple pseudograph" for "undirected simple pseudograph (which could have loops)".

 
Syntaxcuspgr 15945 Extend class notation with undirected simple pseudographs (which could have loops).
 class USPGraph
 
Syntaxcusgr 15946 Extend class notation with undirected simple graphs (without loops).
 class USGraph
 
Definitiondf-uspgren 15947* Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph or a special undirected simple hypergraph, consisting of a set  v (of "vertices") and an injective (one-to-one) function  e (representing (indexed) "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by Jim Kingdon, 15-Jan-2026.)
 |- USPGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
 
Definitiondf-usgren 15948* Define the class of all undirected simple graphs (without loops). An undirected simple graph is a special undirected simple pseudograph, consisting of a set  v (of "vertices") and an injective (one-to-one) function  e (representing (indexed) "edges") into subsets of  v of cardinality two, representing the two vertices incident to the edge. In contrast to an undirected simple pseudograph, an undirected simple graph has no loops (edges connecting a vertex with itself). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
 |- USGraph  =  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  x  ~~  2o } }
 
Theoremisuspgren 15949* The property of being a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e.  U  ->  ( G  e. USPGraph  <->  E : dom  E -1-1-> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
 
Theoremisusgren 15950* The property of being a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e.  U  ->  ( G  e. USGraph  <->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
 ) )
 
Theoremuspgrfen 15951* The edge function of a simple pseudograph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USPGraph  ->  E : dom  E -1-1-> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }
 )
 
Theoremusgrfen 15952* The edge function of a simple graph is a one-to-one function into the set of proper unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  ->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~ 
 2o } )
 
Theoremusgrfun 15953 The edge function of a simple graph is a function. (Contributed by Alexander van der Vekens, 18-Aug-2017.) (Revised by AV, 13-Oct-2020.)
 |-  ( G  e. USGraph  ->  Fun  (iEdg `  G ) )
 
Theoremusgredgssen 15954* The set of edges of a simple graph is a subset of the set of proper unordered pairs of vertices. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 14-Oct-2020.)
 |-  ( G  e. USGraph  ->  (Edg `  G )  C_  { x  e.  ~P (Vtx `  G )  |  x  ~~  2o } )
 
Theoremedgusgren 15955 An edge of a simple graph is a proper unordered pair of vertices. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 14-Oct-2020.)
 |-  ( ( G  e. USGraph  /\  E  e.  (Edg `  G ) )  ->  ( E  e.  ~P (Vtx `  G )  /\  E  ~~  2o ) )
 
Theoremisuspgropen 15956* The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.)
 |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( <. V ,  E >.  e. USPGraph  <->  E : dom  E -1-1-> { p  e.  ~P V  |  ( p  ~~  1o  \/  p  ~~  2o ) } ) )
 
Theoremisusgropen 15957* The property of being an undirected simple graph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 30-Nov-2020.)
 |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( <. V ,  E >.  e. USGraph  <->  E : dom  E -1-1-> { p  e.  ~P V  |  p  ~~  2o }
 ) )
 
Theoremusgrop 15958 A simple graph represented by an ordered pair. (Contributed by AV, 23-Oct-2020.) (Proof shortened by AV, 30-Nov-2020.)
 |-  ( G  e. USGraph  ->  <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. USGraph )
 
Theoremisausgren 15959* The property of an ordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
 |-  G  =  { <. v ,  e >.  |  e 
 C_  { x  e.  ~P v  |  x  ~~  2o } }   =>    |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V G E 
 <->  E  C_  { x  e.  ~P V  |  x  ~~ 
 2o } ) )
 
Theoremausgrusgrben 15960* The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
 |-  G  =  { <. v ,  e >.  |  e 
 C_  { x  e.  ~P v  |  x  ~~  2o } }   =>    |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V G E 
 <-> 
 <. V ,  (  _I  |`  E ) >.  e. USGraph )
 )
 
Theoremusgrausgrien 15961* A simple graph represented by an alternatively defined simple graph. (Contributed by AV, 15-Oct-2020.)
 |-  G  =  { <. v ,  e >.  |  e 
 C_  { x  e.  ~P v  |  x  ~~  2o } }   =>    |-  ( H  e. USGraph  ->  (Vtx `  H ) G (Edg `  H ) )
 
Theoremausgrumgrien 15962* If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.)
 |-  G  =  { <. v ,  e >.  |  e 
 C_  { x  e.  ~P v  |  x  ~~  2o } }   =>    |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  Fun  (iEdg `  H ) )  ->  H  e. UMGraph )
 
Theoremausgrusgrien 15963* The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020.)
 |-  G  =  { <. v ,  e >.  |  e 
 C_  { x  e.  ~P v  |  x  ~~  2o } }   &    |-  O  =  {
 f  |  f : dom  f -1-1-> ran  f }   =>    |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  (iEdg `  H )  e.  O )  ->  H  e. USGraph )
 
Theoremusgrausgrben 15964* The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.)
 |-  G  =  { <. v ,  e >.  |  e 
 C_  { x  e.  ~P v  |  x  ~~  2o } }   &    |-  O  =  {
 f  |  f : dom  f -1-1-> ran  f }   =>    |-  ( ( H  e.  W  /\  (iEdg `  H )  e.  O )  ->  ( (Vtx `  H ) G (Edg `  H ) 
 <->  H  e. USGraph ) )
 
Theoremusgredgop 15965 An edge of a simple graph as second component of an ordered pair. (Contributed by Alexander van der Vekens, 17-Aug-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) (Revised by AV, 15-Oct-2020.)
 |-  ( ( G  e. USGraph  /\  E  =  (iEdg `  G )  /\  X  e.  dom 
 E )  ->  (
 ( E `  X )  =  { M ,  N }  <->  <. X ,  { M ,  N } >.  e.  E ) )
 
Theoremusgrf1o 15966 The edge function of a simple graph is a bijective function onto its range. (Contributed by Alexander van der Vekens, 18-Nov-2017.) (Revised by AV, 15-Oct-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  ->  E : dom  E -1-1-onto-> ran  E )
 
Theoremusgrf1 15967 The edge function of a simple graph is a one to one function. (Contributed by Alexander van der Vekens, 18-Nov-2017.) (Revised by AV, 15-Oct-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  ->  E : dom  E -1-1-> ran  E )
 
Theoremuspgrf1oedg 15968 The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USPGraph  ->  E : dom  E -1-1-onto-> (Edg `  G )
 )
 
Theoremusgrss 15969 An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 15-Oct-2020.)
 |-  E  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   =>    |-  ( ( G  e. USGraph  /\  X  e.  dom  E )  ->  ( E `  X )  C_  V )
 
Theoremuspgredgiedg 15970* In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  K  e.  E )  ->  E! x  e.  dom  I  K  =  ( I `
  x ) )
 
Theoremuspgriedgedg 15971* In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  X  e.  dom  I ) 
 ->  E! k  e.  E  k  =  ( I `  X ) )
 
Theoremuspgrushgr 15972 A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 15-Oct-2020.)
 |-  ( G  e. USPGraph  ->  G  e. USHGraph )
 
Theoremuspgrupgr 15973 A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.)
 |-  ( G  e. USPGraph  ->  G  e. UPGraph )
 
Theoremuspgrupgrushgr 15974 A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.)
 |-  ( G  e. USPGraph  <->  ( G  e. UPGraph  /\  G  e. USHGraph ) )
 
Theoremusgruspgr 15975 A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.)
 |-  ( G  e. USGraph  ->  G  e. USPGraph )
 
Theoremusgrumgr 15976 A simple graph is an undirected multigraph. (Contributed by AV, 25-Nov-2020.)
 |-  ( G  e. USGraph  ->  G  e. UMGraph )
 
Theoremusgrumgruspgr 15977 A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020.)
 |-  ( G  e. USGraph  <->  ( G  e. UMGraph  /\  G  e. USPGraph ) )
 
Theoremusgruspgrben 15978* A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
 |-  ( G  e. USGraph  <->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G ) e  ~~  2o ) )
 
Theoremuspgruhgr 15979 An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.)
 |-  ( G  e. USPGraph  ->  G  e. UHGraph )
 
Theoremusgrupgr 15980 A simple graph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 20-Aug-2017.) (Revised by AV, 15-Oct-2020.)
 |-  ( G  e. USGraph  ->  G  e. UPGraph )
 
Theoremusgruhgr 15981 A simple graph is an undirected hypergraph. (Contributed by AV, 9-Feb-2018.) (Revised by AV, 15-Oct-2020.)
 |-  ( G  e. USGraph  ->  G  e. UHGraph )
 
Theoremusgrislfuspgrdom 15982* A simple graph is a loop-free simple pseudograph. (Contributed by AV, 27-Jan-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  <->  ( G  e. USPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } ) )
 
Theoremuspgrun 15983 The union  U of two simple pseudographs  G and  H with the same vertex set  V is a pseudograph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 16-Oct-2020.)
 |-  ( ph  ->  G  e. USPGraph )   &    |-  ( ph  ->  H  e. USPGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UPGraph )
 
Theoremuspgrunop 15984 The union of two simple pseudographs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are simple pseudographs, then  <. V ,  E  u.  F >. is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  G  e. USPGraph )   &    |-  ( ph  ->  H  e. USPGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UPGraph )
 
Theoremusgrun 15985 The union  U of two simple graphs  G and  H with the same vertex set  V is a multigraph (not necessarily a simple graph!) with the vertex  V and the union  ( E  u.  F
) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.)
 |-  ( ph  ->  G  e. USGraph )   &    |-  ( ph  ->  H  e. USGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   &    |-  ( ph  ->  U  e.  W )   &    |-  ( ph  ->  (Vtx `  U )  =  V )   &    |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )   =>    |-  ( ph  ->  U  e. UMGraph )
 
Theoremusgrunop 15986 The union of two simple graphs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are simple graphs, then  <. V ,  E  u.  F >. is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.)
 |-  ( ph  ->  G  e. USGraph )   &    |-  ( ph  ->  H  e. USGraph )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  (iEdg `  H )   &    |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  (Vtx `  H )  =  V )   &    |-  ( ph  ->  ( dom  E  i^i  dom  F )  =  (/) )   =>    |-  ( ph  ->  <. V ,  ( E  u.  F ) >.  e. UMGraph )
 
Theoremusgredg2en 15987 The value of the "edge function" of a simple graph is a set containing two elements (the vertices the corresponding edge is connecting). (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USGraph  /\  X  e.  dom  E )  ->  ( E `  X )  ~~  2o )
 
Theoremusgredgprv 15988 In a simple graph, an edge is an unordered pair of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   =>    |-  ( ( G  e. USGraph  /\  X  e.  dom  E )  ->  ( ( E `
  X )  =  { M ,  N }  ->  ( M  e.  V  /\  N  e.  V ) ) )
 
Theoremusgredgppren 15989 An edge of a simple graph is a proper pair, i.e. a set containing two different elements (the endvertices of the edge). Analogue of usgredg2en 15987. (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 23-Oct-2020.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USGraph  /\  C  e.  E ) 
 ->  C  ~~  2o )
 
Theoremusgrpredgv 15990 An edge of a simple graph always connects two vertices. Analogue of usgredgprv 15988. (Contributed by Alexander van der Vekens, 7-Oct-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
 |-  E  =  (Edg `  G )   &    |-  V  =  (Vtx `  G )   =>    |-  ( ( G  e. USGraph  /\ 
 { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V ) )
 
Theoremedgssv2en 15991 An edge of a simple graph is a proper unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USGraph  /\  C  e.  E ) 
 ->  ( C  C_  V  /\  C  ~~  2o )
 )
 
Theoremusgredg 15992* For each edge in a simple graph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 17-Oct-2020.) (Shortened by AV, 25-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USGraph  /\  C  e.  E ) 
 ->  E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  C  =  { a ,  b } ) )
 
Theoremusgrnloopv 15993 In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USGraph  /\  M  e.  W ) 
 ->  ( ( E `  X )  =  { M ,  N }  ->  M  =/=  N ) )
 
Theoremusgrnloop 15994* In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  ->  ( E. x  e.  dom  E ( E `  x )  =  { M ,  N }  ->  M  =/=  N ) )
 
Theoremusgrnloop0 15995* A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
 |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  ->  { x  e.  dom  E  |  ( E `  x )  =  { U } }  =  (/) )
 
Theoremusgredgne 15996 An edge of a simple graph always connects two different vertices. Analogue of usgrnloopv 15993 resp. usgrnloop 15994. (Contributed by Alexander van der Vekens, 2-Sep-2017.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USGraph  /\ 
 { M ,  N }  e.  E )  ->  M  =/=  N )
 
Theoremusgrf1oedg 15997 The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( G  e. USGraph  ->  I : dom  I -1-1-onto-> E )
 
Theoremuhgr2edg 15998* If a vertex is adjacent to two different vertices in a hypergraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 11-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   &    |-  V  =  (Vtx `  G )   =>    |-  ( ( ( G  e. UHGraph  /\  A  =/=  B )  /\  ( A  e.  V  /\  B  e.  V  /\  N  e.  V ) 
 /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  E. x  e.  dom  I E. y  e.  dom  I ( x  =/=  y  /\  N  e.  ( I `  x )  /\  N  e.  ( I `  y ) ) )
 
Theoremumgr2edg 15999* If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 11-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  E. x  e.  dom  I E. y  e.  dom  I ( x  =/=  y  /\  N  e.  ( I `  x )  /\  N  e.  ( I `  y ) ) )
 
Theoremusgr2edg 16000* If a vertex is adjacent to two different vertices in a simple graph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 11-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. USGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  E. x  e.  dom  I E. y  e.  dom  I ( x  =/=  y  /\  N  e.  ( I `  x )  /\  N  e.  ( I `  y ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >