HomeHome Intuitionistic Logic Explorer
Theorem List (p. 160 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15901-16000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembdstab 15901 Stability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED STAB  ph
 
Theorembddc 15902 Decidability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED DECID  ph
 
Theorembd3or 15903 A disjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   &    |- BOUNDED  ch   =>    |- BOUNDED  ( ph  \/  ps  \/  ch )
 
Theorembd3an 15904 A conjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   &    |- BOUNDED  ch   =>    |- BOUNDED  ( ph  /\  ps  /\ 
 ch )
 
Theorembdth 15905 A truth (a (closed) theorem) is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
 |-  ph   =>    |- BOUNDED  ph
 
Theorembdtru 15906 The truth value T. is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED T.
 
Theorembdfal 15907 The truth value F. is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED F.
 
Theorembdnth 15908 A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
 |-  -.  ph   =>    |- BOUNDED  ph
 
TheorembdnthALT 15909 Alternate proof of bdnth 15908 not using bdfal 15907. Then, bdfal 15907 can be proved from this theorem, using fal 1380. The total number of proof steps would be 17 (for bdnthALT 15909) + 3 = 20, which is more than 8 (for bdfal 15907) + 9 (for bdnth 15908) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  -.  ph   =>    |- BOUNDED  ph
 
Theorembdxor 15910 The exclusive disjunction of two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/_  ps )
 
Theorembj-bdcel 15911* Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
 |- BOUNDED  y  =  A   =>    |- BOUNDED  A  e.  x
 
Theorembdab 15912 Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  x  e.  { y  |  ph }
 
Theorembdcdeq 15913 Conditional equality of a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED CondEq ( x  =  y  ->  ph )
 
14.2.8.2  Bounded classes

In line with our definitions of classes as extensions of predicates, it is useful to define a predicate for bounded classes, which is done in df-bdc 15915. Note that this notion is only a technical device which can be used to shorten proofs of (semantic) boundedness of formulas.

As will be clear by the end of this subsection (see for instance bdop 15949), one can prove the boundedness of any concrete term using only setvars and bounded formulas, for instance,  |- BOUNDED  ph =>  |- BOUNDED 
<. { x  |  ph } ,  ( {
y ,  suc  z }  X.  <. t ,  (/) >.
) >.. The proofs are long since one has to prove boundedness at each step of the construction, without being able to prove general theorems like  |- BOUNDED  A =>  |- BOUNDED  { A }.

 
Syntaxwbdc 15914 Syntax for the predicate BOUNDED.
 wff BOUNDED  A
 
Definitiondf-bdc 15915* Define a bounded class as one such that membership in this class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |-  (BOUNDED  A  <->  A. xBOUNDED  x  e.  A )
 
Theorembdceq 15916 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
 |-  A  =  B   =>    |-  (BOUNDED  A 
 <-> BOUNDED  B )
 
Theorembdceqi 15917 A class equal to a bounded one is bounded. Note the use of ax-ext 2188. See also bdceqir 15918. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |-  A  =  B   =>    |- BOUNDED  B
 
Theorembdceqir 15918 A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 15917) equality in the hypothesis, to work better with definitions ( B is the definiendum that one wants to prove bounded; see comment of bd0r 15899). (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |-  B  =  A   =>    |- BOUNDED  B
 
Theorembdel 15919* The belonging of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |-  (BOUNDED  A  -> BOUNDED  x  e.  A )
 
Theorembdeli 15920* Inference associated with bdel 15919. Its converse is bdelir 15921. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  e.  A
 
Theorembdelir 15921* Inference associated with df-bdc 15915. Its converse is bdeli 15920. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  x  e.  A   =>    |- BOUNDED  A
 
Theorembdcv 15922 A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  x
 
Theorembdcab 15923 A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  { x  |  ph }
 
Theorembdph 15924 A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
 |- BOUNDED  { x  |  ph }   =>    |- BOUNDED  ph
 
Theorembds 15925* Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 15896; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 15896. (Contributed by BJ, 19-Nov-2019.)
 |- BOUNDED  ph   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- BOUNDED  ps
 
Theorembdcrab 15926* A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  ph   =>    |- BOUNDED  { x  e.  A  |  ph }
 
Theorembdne 15927 Inequality of two setvars is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  x  =/=  y
 
Theorembdnel 15928* Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  e/  A
 
Theorembdreu 15929* Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula  A. x  e.  A ph need not be bounded even if 
A and  ph are. Indeed,  _V is bounded by bdcvv 15931, and  |-  ( A. x  e. 
_V ph  <->  A. x ph ) (in minimal propositional calculus), so by bd0 15898, if  A. x  e. 
_V ph were bounded when  ph is bounded, then  A. x ph would be bounded as well when  ph is bounded, which is not the case. The same remark holds with  E. ,  E! ,  E*. (Contributed by BJ, 16-Oct-2019.)

 |- BOUNDED  ph   =>    |- BOUNDED  E! x  e.  y  ph
 
Theorembdrmo 15930* Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  E* x  e.  y  ph
 
Theorembdcvv 15931 The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  _V
 
Theorembdsbc 15932 A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 15933. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  [. y  /  x ]. ph
 
TheorembdsbcALT 15933 Alternate proof of bdsbc 15932. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- BOUNDED  ph   =>    |- BOUNDED  [. y  /  x ]. ph
 
Theorembdccsb 15934 A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  [_ y  /  x ]_ A
 
Theorembdcdif 15935 The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A 
 \  B )
 
Theorembdcun 15936 The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A  u.  B )
 
Theorembdcin 15937 The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A  i^i  B )
 
Theorembdss 15938 The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  C_  A
 
Theorembdcnul 15939 The empty class is bounded. See also bdcnulALT 15940. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  (/)
 
TheorembdcnulALT 15940 Alternate proof of bdcnul 15939. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15918, or use the corresponding characterizations of its elements followed by bdelir 15921. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- BOUNDED  (/)
 
Theorembdeq0 15941 Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED  x  =  (/)
 
Theorembj-bd0el 15942 Boundedness of the formula "the empty set belongs to the setvar  x". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED  (/)  e.  x
 
Theorembdcpw 15943 The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  ~P A
 
Theorembdcsn 15944 The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x }
 
Theorembdcpr 15945 The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x ,  y }
 
Theorembdctp 15946 The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x ,  y ,  z }
 
Theorembdsnss 15947* Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  { x }  C_  A
 
Theorembdvsn 15948* Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  x  =  { y }
 
Theorembdop 15949 The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED 
 <. x ,  y >.
 
Theorembdcuni 15950 The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
 |- BOUNDED 
 U. x
 
Theorembdcint 15951 The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED 
 |^| x
 
Theorembdciun 15952* The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  U_ x  e.  y  A
 
Theorembdciin 15953* The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  |^|_ x  e.  y  A
 
Theorembdcsuc 15954 The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED 
 suc  x
 
Theorembdeqsuc 15955* Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED  x  =  suc  y
 
Theorembj-bdsucel 15956 Boundedness of the formula "the successor of the setvar  x belongs to the setvar  y". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED  suc  x  e.  y
 
Theorembdcriota 15957* A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
 |- BOUNDED  ph   &    |-  E! x  e.  y  ph   =>    |- BOUNDED  ( iota_ x  e.  y  ph )
 
14.2.9  CZF: Bounded separation

In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory.

 
Axiomax-bdsep 15958* Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4170. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
 )
 
Theorembdsep1 15959* Version of ax-bdsep 15958 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdsep2 15960* Version of ax-bdsep 15958 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 15959 when sufficient. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdsepnft 15961* Closed form of bdsepnf 15962. Version of ax-bdsep 15958 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 15959 when sufficient. (Contributed by BJ, 19-Oct-2019.)
 |- BOUNDED  ph   =>    |-  ( A. x F/ b ph  ->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
 ) )
 
Theorembdsepnf 15962* Version of ax-bdsep 15958 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 15963. Use bdsep1 15959 when sufficient. (Contributed by BJ, 5-Oct-2019.)
 |-  F/ b ph   &    |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
TheorembdsepnfALT 15963* Alternate proof of bdsepnf 15962, not using bdsepnft 15961. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   &    |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdzfauscl 15964* Closed form of the version of zfauscl 4172 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
 |- BOUNDED  ph   =>    |-  ( A  e.  V  ->  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph ) ) )
 
Theorembdbm1.3ii 15965* Bounded version of bm1.3ii 4173. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  E. x A. y ( ph  ->  y  e.  x )   =>    |-  E. x A. y ( y  e.  x  <->  ph )
 
Theorembj-axemptylem 15966* Lemma for bj-axempty 15967 and bj-axempty2 15968. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4178 instead. (New usage is discouraged.)
 |-  E. x A. y ( y  e.  x  -> F.  )
 
Theorembj-axempty 15967* Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4177. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4178 instead. (New usage is discouraged.)
 |-  E. x A. y  e.  x F.
 
Theorembj-axempty2 15968* Axiom of the empty set from bounded separation, alternate version to bj-axempty 15967. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4178 instead. (New usage is discouraged.)
 |-  E. x A. y  -.  y  e.  x
 
Theorembj-nalset 15969* nalset 4182 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x A. y  y  e.  x
 
Theorembj-vprc 15970 vprc 4184 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  _V
 
Theorembj-nvel 15971 nvel 4185 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  A
 
Theorembj-vnex 15972 vnex 4183 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x  x  =  _V
 
Theorembdinex1 15973 Bounded version of inex1 4186. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( A  i^i  B )  e. 
 _V
 
Theorembdinex2 15974 Bounded version of inex2 4187. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( B  i^i  A )  e. 
 _V
 
Theorembdinex1g 15975 Bounded version of inex1g 4188. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   =>    |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theorembdssex 15976 Bounded version of ssex 4189. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theorembdssexi 15977 Bounded version of ssexi 4190. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theorembdssexg 15978 Bounded version of ssexg 4191. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theorembdssexd 15979 Bounded version of ssexd 4192. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A  C_  B )   &    |- BOUNDED  A   =>    |-  ( ph  ->  A  e.  _V )
 
Theorembdrabexg 15980* Bounded version of rabexg 4195. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |- BOUNDED  A   =>    |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theorembj-inex 15981 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  i^i  B )  e.  _V )
 
Theorembj-intexr 15982 intexr 4202 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
 
Theorembj-intnexr 15983 intnexr 4203 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  =  _V  ->  -. 
 |^| A  e.  _V )
 
Theorembj-zfpair2 15984 Proof of zfpair2 4262 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  { x ,  y }  e.  _V
 
Theorembj-prexg 15985 Proof of prexg 4263 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  { A ,  B }  e.  _V )
 
Theorembj-snexg 15986 snexg 4236 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  { A }  e.  _V )
 
Theorembj-snex 15987 snex 4237 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 { A }  e.  _V
 
Theorembj-sels 15988* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
 |-  ( A  e.  V  ->  E. x  A  e.  x )
 
Theorembj-axun2 15989* axun2 4490 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theorembj-uniex2 15990* uniex2 4491 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y  y  =  U. x
 
Theorembj-uniex 15991 uniex 4492 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 U. A  e.  _V
 
Theorembj-uniexg 15992 uniexg 4494 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theorembj-unex 15993 unex 4496 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e. 
 _V
 
Theorembdunexb 15994 Bounded version of unexb 4497. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theorembj-unexg 15995 unexg 4498 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  u.  B )  e.  _V )
 
Theorembj-sucexg 15996 sucexg 4554 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  suc 
 A  e.  _V )
 
Theorembj-sucex 15997 sucex 4555 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 suc  A  e.  _V
 
14.2.9.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 15998 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
 |- BOUNDED  ph   =>    |- DECID  ph
 
Theorembj-d0clsepcl 15999 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
 |- DECID  ph
 
14.2.9.2  Inductive classes and the class of natural number ordinals
 
Syntaxwind 16000 Syntax for inductive classes.
 wff Ind  A
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >