ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-womni Unicode version

Definition df-womni 7090
Description: A weakly omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular,  om  e. WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

Assertion
Ref Expression
df-womni  |- WOmni  =  {
y  |  A. f
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
Distinct variable group:    x, f, y

Detailed syntax breakdown of Definition df-womni
StepHypRef Expression
1 cwomni 7089 . 2  class WOmni
2 vy . . . . . . 7  setvar  y
32cv 1334 . . . . . 6  class  y
4 c2o 6351 . . . . . 6  class  2o
5 vf . . . . . . 7  setvar  f
65cv 1334 . . . . . 6  class  f
73, 4, 6wf 5163 . . . . 5  wff  f : y --> 2o
8 vx . . . . . . . . . 10  setvar  x
98cv 1334 . . . . . . . . 9  class  x
109, 6cfv 5167 . . . . . . . 8  class  ( f `
 x )
11 c1o 6350 . . . . . . . 8  class  1o
1210, 11wceq 1335 . . . . . . 7  wff  ( f `
 x )  =  1o
1312, 8, 3wral 2435 . . . . . 6  wff  A. x  e.  y  ( f `  x )  =  1o
1413wdc 820 . . . . 5  wff DECID  A. x  e.  y  ( f `  x
)  =  1o
157, 14wi 4 . . . 4  wff  ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x )  =  1o )
1615, 5wal 1333 . . 3  wff  A. f
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o )
1716, 2cab 2143 . 2  class  { y  |  A. f ( f : y --> 2o 
-> DECID  A. x  e.  y  ( f `  x )  =  1o ) }
181, 17wceq 1335 1  wff WOmni  =  {
y  |  A. f
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
Colors of variables: wff set class
This definition is referenced by:  iswomni  7091
  Copyright terms: Public domain W3C validator