HomeHome Intuitionistic Logic Explorer
Theorem List (p. 72 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7101-7200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcc4f 7101* Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  F/_ n A   &    |-  ( ph  ->  N  ~~ 
 om )   &    |-  ( x  =  ( f `  n )  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
Theoremcc4 7102* Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
Theoremcc4n 7103* Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7102, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ch ) )
 
PART 4  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6378 and similar theorems ), going from there to positive integers (df-ni 7136) and then positive rational numbers (df-nqqs 7180) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle. With excluded middle, it is natural to define the cut as the lower set only (as Metamath Proof Explorer does), but we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

 
4.1  Construction and axiomatization of real and complex numbers
 
4.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 7104 The set of positive integers, which is the set of natural numbers  om with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and complex numbers.

 class  N.
 
Syntaxcpli 7105 Positive integer addition.
 class  +N
 
Syntaxcmi 7106 Positive integer multiplication.
 class  .N
 
Syntaxclti 7107 Positive integer ordering relation.
 class  <N
 
Syntaxcplpq 7108 Positive pre-fraction addition.
 class  +pQ
 
Syntaxcmpq 7109 Positive pre-fraction multiplication.
 class  .pQ
 
Syntaxcltpq 7110 Positive pre-fraction ordering relation.
 class  <pQ
 
Syntaxceq 7111 Equivalence class used to construct positive fractions.
 class  ~Q
 
Syntaxcnq 7112 Set of positive fractions.
 class  Q.
 
Syntaxc1q 7113 The positive fraction constant 1.
 class  1Q
 
Syntaxcplq 7114 Positive fraction addition.
 class  +Q
 
Syntaxcmq 7115 Positive fraction multiplication.
 class  .Q
 
Syntaxcrq 7116 Positive fraction reciprocal operation.
 class  *Q
 
Syntaxcltq 7117 Positive fraction ordering relation.
 class  <Q
 
Syntaxceq0 7118 Equivalence class used to construct nonnegative fractions.
 class ~Q0
 
Syntaxcnq0 7119 Set of nonnegative fractions.
 class Q0
 
Syntaxc0q0 7120 The nonnegative fraction constant 0.
 class 0Q0
 
Syntaxcplq0 7121 Nonnegative fraction addition.
 class +Q0
 
Syntaxcmq0 7122 Nonnegative fraction multiplication.
 class ·Q0
 
Syntaxcnp 7123 Set of positive reals.
 class  P.
 
Syntaxc1p 7124 Positive real constant 1.
 class  1P
 
Syntaxcpp 7125 Positive real addition.
 class  +P.
 
Syntaxcmp 7126 Positive real multiplication.
 class  .P.
 
Syntaxcltp 7127 Positive real ordering relation.
 class  <P
 
Syntaxcer 7128 Equivalence class used to construct signed reals.
 class  ~R
 
Syntaxcnr 7129 Set of signed reals.
 class  R.
 
Syntaxc0r 7130 The signed real constant 0.
 class  0R
 
Syntaxc1r 7131 The signed real constant 1.
 class  1R
 
Syntaxcm1r 7132 The signed real constant -1.
 class  -1R
 
Syntaxcplr 7133 Signed real addition.
 class  +R
 
Syntaxcmr 7134 Signed real multiplication.
 class  .R
 
Syntaxcltr 7135 Signed real ordering relation.
 class  <R
 
Definitiondf-ni 7136 Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.)
 |- 
 N.  =  ( om  \  { (/) } )
 
Definitiondf-pli 7137 Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 +N  =  (  +o  |`  ( N.  X.  N. ) )
 
Definitiondf-mi 7138 Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 .N  =  (  .o  |`  ( N.  X.  N. ) )
 
Definitiondf-lti 7139 Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.)
 |- 
 <N  =  (  _E  i^i  ( N.  X.  N. ) )
 
Theoremelni 7140 Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/= 
 (/) ) )
 
Theorempinn 7141 A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  ->  A  e.  om )
 
Theorempion 7142 A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
 |-  ( A  e.  N.  ->  A  e.  On )
 
Theorempiord 7143 A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.)
 |-  ( A  e.  N.  ->  Ord  A )
 
Theoremniex 7144 The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
 |- 
 N.  e.  _V
 
Theorem0npi 7145 The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
 |- 
 -.  (/)  e.  N.
 
Theoremelni2 7146 Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
 |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A ) )
 
Theorem1pi 7147 Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.)
 |- 
 1o  e.  N.
 
Theoremaddpiord 7148 Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
 
Theoremmulpiord 7149 Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
 
Theoremmulidpi 7150 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
 
Theoremltpiord 7151 Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B )
 )
 
Theoremltsopi 7152 Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
 |- 
 <N  Or  N.
 
Theorempitric 7153 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  -.  ( A  =  B  \/  B  <N  A )
 ) )
 
Theorempitri3or 7154 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  \/  A  =  B  \/  B  <N  A )
 )
 
Theoremltdcpi 7155 Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  -> DECID  A  <N  B )
 
Theoremltrelpi 7156 Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
 |- 
 <N  C_  ( N.  X.  N. )
 
Theoremdmaddpi 7157 Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
 |- 
 dom  +N  =  ( N.  X.  N. )
 
Theoremdmmulpi 7158 Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.)
 |- 
 dom  .N  =  ( N.  X.  N. )
 
Theoremaddclpi 7159 Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  +N  B )  e.  N. )
 
Theoremmulclpi 7160 Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  .N  B )  e.  N. )
 
Theoremaddcompig 7161 Addition of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  +N  B )  =  ( B  +N  A ) )
 
Theoremaddasspig 7162 Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( A  +N  ( B  +N  C ) ) )
 
Theoremmulcompig 7163 Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  .N  B )  =  ( B  .N  A ) )
 
Theoremmulasspig 7164 Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( A  .N  ( B  .N  C ) ) )
 
Theoremdistrpig 7165 Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) ) )
 
Theoremaddcanpig 7166 Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  =  ( A  +N  C )  <->  B  =  C ) )
 
Theoremmulcanpig 7167 Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  <->  B  =  C ) )
 
Theoremaddnidpig 7168 There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )
 
Theoremltexpi 7169* Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  E. x  e.  N.  ( A  +N  x )  =  B )
 )
 
Theoremltapig 7170 Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  +N  A )  <N  ( C  +N  B ) ) )
 
Theoremltmpig 7171 Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
 
Theorem1lt2pi 7172 One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
 |- 
 1o  <N  ( 1o  +N  1o )
 
Theoremnlt1pig 7173 No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( A  e.  N.  ->  -.  A  <N  1o )
 
Theoremindpi 7174* Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.)
 |-  ( x  =  1o  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +N  1o )  ->  ( ph 
 <-> 
 th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  N.  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  N.  ->  ta )
 
Theoremnnppipi 7175 A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  N. )  ->  ( A  +o  B )  e.  N. )
 
Definitiondf-plpq 7176* Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition  +Q (df-plqqs 7181) works with the equivalence classes of these ordered pairs determined by the equivalence relation  ~Q (df-enq 7179). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 28-Aug-1995.)
 |- 
 +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |-> 
 <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
 ) ) >. )
 
Definitiondf-mpq 7177* Define pre-multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 28-Aug-1995.)
 |- 
 .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |-> 
 <. ( ( 1st `  x )  .N  ( 1st `  y
 ) ) ,  (
 ( 2nd `  x )  .N  ( 2nd `  y
 ) ) >. )
 
Definitiondf-ltpq 7178* Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 28-Aug-1995.)
 |- 
 <pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N. 
 X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y
 ) )  <N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) }
 
Definitiondf-enq 7179* Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.)
 |- 
 ~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X. 
 N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .N  u )  =  ( w  .N  v ) ) ) }
 
Definitiondf-nqqs 7180 Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 16-Aug-1995.)
 |- 
 Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
 
Definitiondf-plqqs 7181* Define addition on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 24-Aug-1995.)
 |- 
 +Q  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f >. ) ]  ~Q  ) ) }
 
Definitiondf-mqqs 7182* Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.)
 |- 
 .Q  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f >. ) ]  ~Q  ) ) }
 
Definitiondf-1nqqs 7183 Define positive fraction constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 29-Oct-1995.)
 |- 
 1Q  =  [ <. 1o ,  1o >. ]  ~Q
 
Definitiondf-rq 7184* Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by Jim Kingdon, 20-Sep-2019.)
 |- 
 *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  ( x  .Q  y )  =  1Q ) }
 
Definitiondf-ltnqqs 7185* Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.)
 |- 
 <Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u )  <N  ( w  .N  v ) ) ) }
 
Theoremdfplpq2 7186* Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
 |- 
 +pQ  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) 
 /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( ( w  .N  f )  +N  (
 v  .N  u )
 ) ,  ( v  .N  f ) >. ) ) }
 
Theoremdfmpq2 7187* Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.)
 |- 
 .pQ  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) 
 /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( w  .N  u ) ,  ( v  .N  f ) >. ) ) }
 
Theoremenqbreq 7188 Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( <. A ,  B >.  ~Q  <. C ,  D >.  <-> 
 ( A  .N  D )  =  ( B  .N  C ) ) )
 
Theoremenqbreq2 7189 Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
 |-  ( ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N. 
 X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B ) )  =  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) )
 
Theoremenqer 7190 The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |- 
 ~Q  Er  ( N.  X. 
 N. )
 
Theoremenqeceq 7191 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ]  ~Q  =  [ <. C ,  D >. ] 
 ~Q 
 <->  ( A  .N  D )  =  ( B  .N  C ) ) )
 
Theoremenqex 7192 The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
 |- 
 ~Q  e.  _V
 
Theoremenqdc 7193 The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )
 
Theoremenqdc1 7194 The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )
 
Theoremnqex 7195 The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 Q.  e.  _V
 
Theorem0nnq 7196 The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 -.  (/)  e.  Q.
 
Theoremltrelnq 7197 Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 <Q  C_  ( Q.  X.  Q. )
 
Theorem1nq 7198 The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.)
 |- 
 1Q  e.  Q.
 
Theoremaddcmpblnq 7199 Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
 )  /\  ( ( F  e.  N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R ) ) 
 ->  <. ( ( A  .N  G )  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q 
 <. ( ( C  .N  S )  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. ) )
 
Theoremmulcmpblnq 7200 Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
 )  /\  ( ( F  e.  N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R ) ) 
 ->  <. ( A  .N  F ) ,  ( B  .N  G ) >.  ~Q 
 <. ( C  .N  R ) ,  ( D  .N  S ) >. ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >