HomeHome Intuitionistic Logic Explorer
Theorem List (p. 72 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7101-7200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisomnimap 7101* The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( f `  x )  =  (/)  \/  A. x  e.  A  (
 f `  x )  =  1o ) ) )
 
Theoremenomnilem 7102 Lemma for enomni 7103. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  ~~  B  ->  ( A  e. Omni  ->  B  e. Omni ) )
 
Theoremenomni 7103 Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either  om  e. Omni or  NN0  e. Omni. The former is a better match to conventional notation in the sense that df2o3 6398 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 13-Jul-2022.)
 |-  ( A  ~~  B  ->  ( A  e. Omni  <->  B  e. Omni ) )
 
Theoremfinomni 7104 A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
 |-  ( A  e.  Fin  ->  A  e. Omni )
 
Theoremexmidomniim 7105 Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7106. (Contributed by Jim Kingdon, 29-Jun-2022.)
 |-  (EXMID 
 ->  A. x  x  e. Omni
 )
 
Theoremexmidomni 7106 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
 |-  (EXMID  <->  A. x  x  e. Omni )
 
Theoremexmidlpo 7107 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
 |-  (EXMID 
 ->  om  e. Omni )
 
Theoremfodjuomnilemdc 7108* Lemma for fodjuomni 7113. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   =>    |-  ( ( ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
 ) )
 
Theoremfodjuf 7109* Lemma for fodjuomni 7113 and fodjumkv 7124. Domain and range of  P. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  O  e.  V )   =>    |-  ( ph  ->  P  e.  ( 2o  ^m  O ) )
 
Theoremfodjum 7110* Lemma for fodjuomni 7113 and fodjumkv 7124. A condition which shows that  A is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  E. w  e.  O  ( P `  w )  =  (/) )   =>    |-  ( ph  ->  E. x  x  e.  A )
 
Theoremfodju0 7111* Lemma for fodjuomni 7113 and fodjumkv 7124. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   &    |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )   =>    |-  ( ph  ->  A  =  (/) )
 
Theoremfodjuomnilemres 7112* Lemma for fodjuomni 7113. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
 |-  ( ph  ->  O  e. Omni )   &    |-  ( ph  ->  F : O -onto-> ( A B ) )   &    |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   =>    |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
 
Theoremfodjuomni 7113* A condition which ensures  A is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
 |-  ( ph  ->  O  e. Omni )   &    |-  ( ph  ->  F : O -onto-> ( A B ) )   =>    |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
 
Theoremctssexmid 7114* The decidability condition in ctssdc 7078 is needed. More specifically, ctssdc 7078 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
 |-  ( ( y  C_  om 
 /\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )   &    |-  om  e. Omni   =>    |-  ( ph  \/  -.  ph )
 
2.6.39  Markov's principle
 
Syntaxcmarkov 7115 Extend class definition to include the class of Markov sets.
 class Markov
 
Definitiondf-markov 7116* A Markov set is one where if a predicate (here represented by a function  f) on that set does not hold (where hold means is equal to  1o) for all elements, then there exists an element where it fails (is equal to  (/)). Generalization of definition 2.5 of [Pierik], p. 9.

In particular,  om  e. Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

 |- Markov  =  { y  |  A. f ( f : y --> 2o  ->  ( -. 
 A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
 
Theoremismkv 7117* The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
 
Theoremismkvmap 7118* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
 
Theoremismkvnex 7119* The predicate of being Markov stated in terms of double negation and comparison with  1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )
 ) )
 
Theoremomnimkv 7120 An omniscient set is Markov. In particular, the case where  A is  om means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
 |-  ( A  e. Omni  ->  A  e. Markov )
 
Theoremexmidmp 7121 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
 |-  (EXMID 
 ->  om  e. Markov )
 
Theoremmkvprop 7122* Markov's Principle expressed in terms of propositions (or more precisely, the  A  =  om case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
 |-  ( ( A  e. Markov  /\ 
 A. n  e.  A DECID  ph  /\  -.  A. n  e.  A  -.  ph )  ->  E. n  e.  A  ph )
 
Theoremfodjumkvlemres 7123* Lemma for fodjumkv 7124. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  M  e. Markov )   &    |-  ( ph  ->  F : M -onto-> ( A B ) )   &    |-  P  =  ( y  e.  M  |->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z ) ,  (/) ,  1o ) )   =>    |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
 )
 
Theoremfodjumkv 7124* A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( ph  ->  M  e. Markov )   &    |-  ( ph  ->  F : M -onto-> ( A B ) )   =>    |-  ( ph  ->  ( A  =/=  (/)  ->  E. x  x  e.  A )
 )
 
Theoremenmkvlem 7125 Lemma for enmkv 7126. One direction of the biconditional. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  ->  B  e. Markov ) )
 
Theoremenmkv 7126 Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6398 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
 
2.6.40  Weakly omniscient sets
 
Syntaxcwomni 7127 Extend class definition to include the class of weakly omniscient sets.
 class WOmni
 
Definitiondf-womni 7128* A weakly omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or not. Generalization of definition 2.4 of [Pierik], p. 9.

In particular,  om  e. WOmni is known as the Weak Limited Principle of Omniscience (WLPO).

The term WLPO is common in the literature; there appears to be no widespread term for what we are calling a weakly omniscient set. (Contributed by Jim Kingdon, 9-Jun-2024.)

 |- WOmni  =  { y  |  A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x )  =  1o ) }
 
Theoremiswomni 7129* The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
 
Theoremiswomnimap 7130* The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1o ) )
 
Theoremomniwomnimkv 7131 A set is omniscient if and only if it is weakly omniscient and Markov. The case  A  =  om says that LPO  <-> WLPO  /\ MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
 |-  ( A  e. Omni  <->  ( A  e. WOmni  /\  A  e. Markov ) )
 
Theoremlpowlpo 7132 LPO implies WLPO. Easy corollary of the more general omniwomnimkv 7131. There is an analogue in terms of analytic omniscience principles at tridceq 13935. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( om  e. Omni  ->  om  e. WOmni )
 
Theoremenwomnilem 7133 Lemma for enwomni 7134. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni ) )
 
Theoremenwomni 7134 Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either  om  e. WOmni or  NN0  e. WOmni. The former is a better match to conventional notation in the sense that df2o3 6398 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  ~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )
 
2.6.41  Cardinal numbers
 
Syntaxccrd 7135 Extend class definition to include the cardinal size function.
 class  card
 
Definitiondf-card 7136* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
 |- 
 card  =  ( x  e.  _V  |->  |^| { y  e. 
 On  |  y  ~~  x } )
 
Theoremcardcl 7137* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. y  e. 
 On  y  ~~  A  ->  ( card `  A )  e.  On )
 
Theoremisnumi 7138 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card
 )
 
Theoremfinnum 7139 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  Fin  ->  A  e.  dom  card )
 
Theoremonenon 7140 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  On  ->  A  e.  dom  card )
 
Theoremcardval3ex 7141* The value of  ( card `  A
). (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e. 
 On  |  y  ~~  A } )
 
Theoremoncardval 7142* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  ( A  e.  On  ->  ( card `  A )  =  |^| { x  e. 
 On  |  x  ~~  A } )
 
Theoremcardonle 7143 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
 |-  ( A  e.  On  ->  ( card `  A )  C_  A )
 
Theoremcard0 7144 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
 |-  ( card `  (/) )  =  (/)
 
Theoremcarden2bex 7145* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  ~~  B  /\  E. x  e. 
 On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B ) )
 
Theorempm54.43 7146 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
 |-  ( ( A  ~~  1o  /\  B  ~~  1o )  ->  ( ( A  i^i  B )  =  (/) 
 <->  ( A  u.  B )  ~~  2o ) )
 
Theorempr2nelem 7147 Lemma for pr2ne 7148. (Contributed by FL, 17-Aug-2008.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B ) 
 ->  { A ,  B }  ~~  2o )
 
Theorempr2ne 7148 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
 
Theoremexmidonfinlem 7149* Lemma for exmidonfin 7150. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  A  =  { { x  e.  { (/) }  |  ph
 } ,  { x  e.  { (/) }  |  -.  ph
 } }   =>    |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
 
Theoremexmidonfin 7150 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6838 and nnon 4587. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
 |-  ( om  =  ( On  i^i  Fin )  -> EXMID )
 
Theoremen2eleq 7151 Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
 |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P 
 \  { X }
 ) } )
 
Theoremen2other2 7152 Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
 |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) }
 )  =  X )
 
Theoremdju1p1e2 7153 Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( 1o 1o )  ~~  2o
 
Theoreminfpwfidom 7154 The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption 
( ~P A  i^i  Fin )  e.  _V because this theorem also implies that  A is a set if  ~P A  i^i  Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
 |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
 
Theoremexmidfodomrlemeldju 7155 Lemma for exmidfodomr 7160. A variant of djur 7034. (Contributed by Jim Kingdon, 2-Jul-2022.)
 |-  ( ph  ->  A  C_ 
 1o )   &    |-  ( ph  ->  B  e.  ( A 1o )
 )   =>    |-  ( ph  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
 
Theoremexmidfodomrlemreseldju 7156 Lemma for exmidfodomrlemrALT 7159. A variant of eldju 7033. (Contributed by Jim Kingdon, 9-Jul-2022.)
 |-  ( ph  ->  A  C_ 
 1o )   &    |-  ( ph  ->  B  e.  ( A 1o )
 )   =>    |-  ( ph  ->  (
 ( (/)  e.  A  /\  B  =  ( (inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `  (/) ) ) )
 
Theoremexmidfodomrlemim 7157* Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  (EXMID 
 ->  A. x A. y
 ( ( E. z  z  e.  y  /\  y 
 ~<_  x )  ->  E. f  f : x -onto-> y ) )
 
Theoremexmidfodomrlemr 7158* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  -> EXMID )
 
TheoremexmidfodomrlemrALT 7159* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7158. In particular, this proof uses eldju 7033 instead of djur 7034 and avoids djulclb 7020. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
 |-  ( A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y )  -> EXMID )
 
Theoremexmidfodomr 7160* Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.)
 |-  (EXMID  <->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
 
2.6.42  Axiom of Choice equivalents
 
Syntaxwac 7161 Formula for an abbreviation of the axiom of choice.
 wff CHOICE
 
Definitiondf-ac 7162* The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There are some decisions about how to write this definition especially around whether ax-setind 4514 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.)

 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x )
 )
 
Theoremacfun 7163* A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
 |-  ( ph  -> CHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )   =>    |-  ( ph  ->  E. f
 ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x )
 )
 
Theoremexmidaclem 7164* Lemma for exmidac 7165. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }   &    |-  B  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  y  =  { (/) } ) }   &    |-  C  =  { A ,  B }   =>    |-  (CHOICE 
 -> EXMID )
 
Theoremexmidac 7165 The axiom of choice implies excluded middle. See acexmid 5841 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  (CHOICE 
 -> EXMID )
 
2.6.43  Cardinal number arithmetic
 
Theoremendjudisj 7166 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A B )  ~~  ( A  u.  B ) )
 
Theoremdjuen 7167 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  ( A C ) 
 ~~  ( B D ) )
 
Theoremdjuenun 7168 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
 |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D ) )
 
Theoremdju1en 7169 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  -.  A  e.  A )  ->  ( A 1o )  ~~  suc  A )
 
Theoremdju0en 7170 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  V  ->  ( A (/) )  ~~  A )
 
Theoremxp2dju 7171 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( 2o  X.  A )  =  ( A A )
 
Theoremdjucomen 7172 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B ) 
 ~~  ( B A ) )
 
Theoremdjuassen 7173 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( ( A B ) C )  ~~  ( A ( B C ) ) )
 
Theoremxpdjuen 7174 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
 
Theoremdjudoml 7175 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  ( A B ) )
 
Theoremdjudomr 7176 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~<_  ( A B ) )
 
2.6.44  Ordinal trichotomy
 
Theoremexmidontriimlem1 7177 Lemma for exmidontriim 7181. A variation of r19.30dc 2613. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ( A. x  e.  A  ( ph  \/  ps 
 \/  ch )  /\ EXMID )  ->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps  \/  A. x  e.  A  ch ) )
 
Theoremexmidontriimlem2 7178* Lemma for exmidontriim 7181. (Contributed by Jim Kingdon, 12-Aug-2024.)
 |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
 
Theoremexmidontriimlem3 7179* Lemma for exmidontriim 7181. What we get to do based on induction on both  A and  B. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   &    |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
Theoremexmidontriimlem4 7180* Lemma for exmidontriim 7181. The induction step for the induction on  A. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  -> EXMID
 )   &    |-  ( ph  ->  A. z  e.  A  A. y  e. 
 On  ( z  e.  y  \/  z  =  y  \/  y  e.  z ) )   =>    |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
 )
 
Theoremexmidontriim 7181* Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
 |-  (EXMID 
 ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
2.6.45  Excluded middle and the power set of a singleton
 
Theorempw1on 7182 The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
 |- 
 ~P 1o  e.  On
 
Theorempw1dom2 7183 The power set of  1o dominates  2o. Also see pwpw0ss 3784 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
 |- 
 2o  ~<_  ~P 1o
 
Theorempw1ne0 7184 The power set of  1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  (/)
 
Theorempw1ne1 7185 The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  1o
 
Theorempw1ne3 7186 The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 ~P 1o  =/=  3o
 
Theorempw1nel3 7187 Negated excluded middle implies that the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
 
Theoremsucpw1ne3 7188 Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
 
Theoremsucpw1nel3 7189 The successor of the power set of 
1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  suc  ~P 1o  e.  3o
 
Theorem3nelsucpw1 7190 Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
 |- 
 -.  3o  e.  suc  ~P 1o
 
Theoremsucpw1nss3 7191 Negated excluded middle implies that the successor of the power set of  1o is not a subset of  3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_ 
 3o )
 
Theorem3nsssucpw1 7192 Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
 |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
 
Theoremonntri35 7193* Double negated ordinal trichotomy.

There are five equivalent statements: (1)  -.  -.  A. x  e.  On A. y  e.  On ( x  e.  y  \/  x  =  y  \/  y  e.  x ), (2)  -.  -.  A. x  e.  On A. y  e.  On ( x  C_  y  \/  y  C_  x ), (3)  A. x  e.  On A. y  e.  On -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x ), (4)  A. x  e.  On A. y  e.  On -.  -.  (
x  C_  y  \/  y  C_  x ), and (5)  -.  -. EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7194), (3) implies (5) (onntri35 7193), (5) implies (1) (onntri51 7196), (2) implies (4) (onntri24 7198), (4) implies (5) (onntri45 7197), and (5) implies (2) (onntri52 7200).

Another way of stating this is that EXMID is equivalent to trichotomy, either the  x  e.  y  \/  x  =  y  \/  y  e.  x or the  x  C_  y  \/  y  C_  x form, as shown in exmidontri 7195 and exmidontri2or 7199, respectively. Thus  -.  -. EXMID is equivalent to (1) or (2). In addition, 
-.  -. EXMID is equivalent to (3) by onntri3or 7201 and (4) by onntri2or 7202.

(Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)

 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  -. EXMID )
 
Theoremonntri13 7194 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e. 
 On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremexmidontri 7195* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremonntri51 7196* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
 )
 
Theoremonntri45 7197* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( A. x  e. 
 On  A. y  e.  On  -. 
 -.  ( x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
 
Theoremonntri24 7198 Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
 
Theoremexmidontri2or 7199* Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
 |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
 
Theoremonntri52 7200* Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
 |-  ( -.  -. EXMID  ->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >