ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomni Unicode version

Theorem iswomni 7328
Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomni  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem iswomni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5456 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 raleq 2728 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
32dcbid 843 . . . 4  |-  ( y  =  A  ->  (DECID  A. x  e.  y  (
f `  x )  =  1o  <-> DECID  A. x  e.  A  ( f `  x )  =  1o ) )
41, 3imbi12d 234 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o )  <-> 
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
54albidv 1870 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o )  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
6 df-womni 7327 . 2  |- WOmni  =  {
y  |  A. f
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
75, 6elab2g 2950 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 839   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   -->wf 5313   ` cfv 5317   1oc1o 6553   2oc2o 6554  WOmnicwomni 7326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-fn 5320  df-f 5321  df-womni 7327
This theorem is referenced by:  iswomnimap  7329  omniwomnimkv  7330
  Copyright terms: Public domain W3C validator