Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iswomni | Unicode version |
Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
Ref | Expression |
---|---|
iswomni | WOmni DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5321 | . . . 4 | |
2 | raleq 2661 | . . . . 5 | |
3 | 2 | dcbid 828 | . . . 4 DECID DECID |
4 | 1, 3 | imbi12d 233 | . . 3 DECID DECID |
5 | 4 | albidv 1812 | . 2 DECID DECID |
6 | df-womni 7128 | . 2 WOmni DECID | |
7 | 5, 6 | elab2g 2873 | 1 WOmni DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 wral 2444 wf 5184 cfv 5188 c1o 6377 c2o 6378 WOmnicwomni 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-fn 5191 df-f 5192 df-womni 7128 |
This theorem is referenced by: iswomnimap 7130 omniwomnimkv 7131 |
Copyright terms: Public domain | W3C validator |