ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomni Unicode version

Theorem iswomni 7129
Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomni  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem iswomni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5321 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 raleq 2661 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
32dcbid 828 . . . 4  |-  ( y  =  A  ->  (DECID  A. x  e.  y  (
f `  x )  =  1o  <-> DECID  A. x  e.  A  ( f `  x )  =  1o ) )
41, 3imbi12d 233 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o )  <-> 
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
54albidv 1812 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o )  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
6 df-womni 7128 . 2  |- WOmni  =  {
y  |  A. f
( f : y --> 2o  -> DECID  A. x  e.  y  ( f `  x
)  =  1o ) }
75, 6elab2g 2873 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104  DECID wdc 824   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444   -->wf 5184   ` cfv 5188   1oc1o 6377   2oc2o 6378  WOmnicwomni 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-fn 5191  df-f 5192  df-womni 7128
This theorem is referenced by:  iswomnimap  7130  omniwomnimkv  7131
  Copyright terms: Public domain W3C validator