ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp5a Unicode version

Theorem imp5a 356
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
imp5.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
imp5a  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ( th 
/\  ta )  ->  et ) ) ) )

Proof of Theorem imp5a
StepHypRef Expression
1 imp5.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
2 pm3.31 260 . 2  |-  ( ( th  ->  ( ta  ->  et ) )  -> 
( ( th  /\  ta )  ->  et ) )
31, 2syl8 71 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ( th 
/\  ta )  ->  et ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator