ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.31 Unicode version

Theorem pm3.31 260
Description: Theorem *3.31 (Imp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.31  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  /\  ps )  ->  ch ) )

Proof of Theorem pm3.31
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ch ) ) )
21impd 252 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  /\  ps )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  impexp  261  imp5a  355  equsexd  1707  mo3h  2050  rexim  2524  peano5  4507  issref  4916  bj-indind  13119
  Copyright terms: Public domain W3C validator