HomeHome Intuitionistic Logic Explorer
Theorem List (p. 4 of 137)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 301-400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembiantrur 301 A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.)
 |-  ph   =>    |-  ( ps  <->  ( ph  /\  ps ) )
 
Theorembiantrud 302 A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  <->  ( ch  /\  ps ) ) )
 
Theorembiantrurd 303 A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  <->  ( ps  /\  ch ) ) )
 
Theoremjca 304 Deduce conjunction of the consequents of two implications ("join consequents with 'and'"). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   =>    |-  ( ph  ->  ( ps  /\  ch ) )
 
Theoremjcad 305 Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  th ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )
 
Theoremjca2 306 Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ps  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )
 
Theoremjca31 307 Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  /\  th ) )
 
Theoremjca32 308 Join three consequents. (Contributed by FL, 1-Aug-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ps  /\  ( ch  /\  th ) ) )
 
Theoremjcai 309 Deduction replacing implication with conjunction. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  /\  ch ) )
 
Theoremjctil 310 Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
 |-  ( ph  ->  ps )   &    |-  ch   =>    |-  ( ph  ->  ( ch  /\  ps ) )
 
Theoremjctir 311 Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
 |-  ( ph  ->  ps )   &    |-  ch   =>    |-  ( ph  ->  ( ps  /\  ch ) )
 
Theoremjctl 312 Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
 |- 
 ps   =>    |-  ( ph  ->  ( ps  /\  ph ) )
 
Theoremjctr 313 Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
 |- 
 ps   =>    |-  ( ph  ->  ( ph  /\  ps ) )
 
Theoremjctild 314 Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( th  /\  ch ) ) )
 
Theoremjctird 315 Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )
 
Theoremancl 316 Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( ph  ->  ps )  ->  ( ph  ->  ( ph  /\  ps ) ) )
 
Theoremanclb 317 Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ph  ->  (
 ph  /\  ps )
 ) )
 
Theorempm5.42 318 Theorem *5.42 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) ) )
 
Theoremancr 319 Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( ph  ->  ps )  ->  ( ph  ->  ( ps  /\  ph )
 ) )
 
Theoremancrb 320 Conjoin antecedent to right of consequent. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ph  ->  ( ps  /\  ph )
 ) )
 
Theoremancli 321 Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ph  /\  ps ) )
 
Theoremancri 322 Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ps  /\  ph ) )
 
Theoremancld 323 Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  ( ps  /\ 
 ch ) ) )
 
Theoremancrd 324 Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\ 
 ps ) ) )
 
Theoremanc2l 325 Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 14-Jul-2013.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 )  ->  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) ) )
 
Theoremanc2r 326 Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 )  ->  ( ph  ->  ( ps  ->  ( ch  /\  ph ) ) ) )
 
Theoremanc2li 327 Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  ( ph  /\ 
 ch ) ) )
 
Theoremanc2ri 328 Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  ph ) ) )
 
Theorempm3.41 329 Theorem *3.41 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  ch )  ->  ( ( ph  /\  ps )  ->  ch ) )
 
Theorempm3.42 330 Theorem *3.42 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ps  ->  ch )  ->  ( ( ph  /\  ps )  ->  ch ) )
 
Theorempm3.4 331 Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
 |-  ( ( ph  /\  ps )  ->  ( ph  ->  ps ) )
 
Theorempm4.45im 332 Conjunction with implication. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 17-May-1998.)
 |-  ( ph  <->  ( ph  /\  ( ps  ->  ph ) ) )
 
Theoremanim12d 333 Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   =>    |-  ( ph  ->  (
 ( ps  /\  th )  ->  ( ch  /\  ta ) ) )
 
Theoremanim1d 334 Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ( ps  /\  th )  ->  ( ch  /\  th ) ) )
 
Theoremanim2d 335 Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th  /\  ch ) ) )
 
Theoremanim12i 336 Conjoin antecedents and consequents of two premises. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Dec-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   =>    |-  ( ( ph  /\  ch )  ->  ( ps  /\  th ) )
 
Theoremanim12ci 337 Variant of anim12i 336 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   =>    |-  ( ( ph  /\  ch )  ->  ( th  /\  ps ) )
 
Theoremanim1i 338 Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  ch )  ->  ( ps  /\  ch ) )
 
Theoremanim1ci 339 Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  ch )  ->  ( ch  /\  ps ) )
 
Theoremanim2i 340 Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ph )  ->  ( ch  /\  ps ) )
 
Theoremanim12ii 341 Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007.) (Proof shortened by Wolf Lammen, 19-Jul-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th  ->  ( ps  ->  ta ) )   =>    |-  ( ( ph  /\  th )  ->  ( ps  ->  ( ch  /\  ta )
 ) )
 
Theoremanim12 342 Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it 'praeclarum theorema' (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ( ph  /\  ch )  ->  ( ps  /\  th ) ) )
 
Theorempm3.33 343 Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch )
 )
 
Theorempm3.34 344 Theorem *3.34 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ps 
 ->  ch )  /\  ( ph  ->  ps ) )  ->  ( ph  ->  ch )
 )
 
Theorempm3.35 345 Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.)
 |-  ( ( ph  /\  ( ph  ->  ps ) )  ->  ps )
 
Theorempm5.31 346 Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ch  /\  ( ph  ->  ps )
 )  ->  ( ph  ->  ( ps  /\  ch ) ) )
 
Theoremimp4a 347 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ph  ->  ( ps  ->  ( ( ch  /\  th )  ->  ta ) ) )
 
Theoremimp4b 348 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  (
 ( ch  /\  th )  ->  ta ) )
 
Theoremimp4c 349 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ph  ->  ( ( ( ps  /\  ch )  /\  th )  ->  ta ) )
 
Theoremimp4d 350 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ( ch  /\  th ) ) 
 ->  ta ) )
 
Theoremimp41 351 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )
 
Theoremimp42 352 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( (
 ph  /\  ( ps  /\ 
 ch ) )  /\  th )  ->  ta )
 
Theoremimp43 353 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( (
 ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
 
Theoremimp44 354 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( ph  /\  ( ( ps  /\  ch )  /\  th )
 )  ->  ta )
 
Theoremimp45 355 An importation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( ph  /\  ( ps  /\  ( ch  /\  th ) ) )  ->  ta )
 
Theoremimp5a 356 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ( th  /\  ta )  ->  et ) ) ) )
 
Theoremimp5d 357 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )   =>    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  ( ( th  /\ 
 ta )  ->  et )
 )
 
Theoremimp5g 358 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )   =>    |-  ( ( ph  /\  ps )  ->  ( ( ( ch  /\  th )  /\  ta )  ->  et )
 )
 
Theoremimp55 359 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )   =>    |-  ( ( ( ph  /\  ( ps  /\  ( ch  /\  th ) ) )  /\  ta )  ->  et )
 
Theoremimp511 360 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )   =>    |-  ( ( ph  /\  (
 ( ps  /\  ( ch  /\  th ) ) 
 /\  ta ) )  ->  et )
 
Theoremexpimpd 361 Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )
 
Theoremexp31 362 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
 
Theoremexp32 363 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
 
Theoremexp4a 364 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ( ch 
 /\  th )  ->  ta )
 ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp4b 365 An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ( ( ch 
 /\  th )  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp4c 366 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  (
 ( ( ps  /\  ch )  /\  th )  ->  ta ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp4d 367 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ph  ->  (
 ( ps  /\  ( ch  /\  th ) ) 
 ->  ta ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp41 368 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ( (
 ph  /\  ps )  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp42 369 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp43 370 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th ) ) 
 ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp44 371 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ph  /\  (
 ( ps  /\  ch )  /\  th ) ) 
 ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexp45 372 An exportation inference. (Contributed by NM, 26-Apr-1994.)
 |-  ( ( ph  /\  ( ps  /\  ( ch  /\  th ) ) )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexpr 373 Export a wff from a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )
 
Theoremexp5c 374 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  ( ( th  /\ 
 ta )  ->  et )
 ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )
 
Theoremexp53 375 An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.)
 |-  ( ( ( (
 ph  /\  ps )  /\  ( ch  /\  th ) )  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )
 
Theoremexpl 376 Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )
 
Theoremimpr 377 Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )
 
Theoremimpl 378 Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ( (
 ph  /\  ps )  /\  ch )  ->  th )
 
Theoremimpac 379 Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( ch  /\  ps ) )
 
Theoremexbiri 380 Inference form of exbir 1416. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
 
Theoremsimprbda 381 Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.)
 |-  ( ph  ->  ( ps 
 <->  ( ch  /\  th ) ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  ch )
 
Theoremsimplbda 382 Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.)
 |-  ( ph  ->  ( ps 
 <->  ( ch  /\  th ) ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  th )
 
Theoremsimplbi2 383 Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ps  ->  ( ch  ->  ph ) )
 
Theoremsimpl2im 384 Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.)
 |-  ( ph  ->  ( ps  /\  ch ) )   &    |-  ( ch  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsimplbiim 385 Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ( ps  /\  ch ) )   &    |-  ( ch  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremdfbi2 386 A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
 |-  ( ( ph  <->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph ) ) )
 
Theorempm4.71 387 Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
 |-  ( ( ph  ->  ps )  <->  ( ph  <->  ( ph  /\  ps ) ) )
 
Theorempm4.71r 388 Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.)
 |-  ( ( ph  ->  ps )  <->  ( ph  <->  ( ps  /\  ph ) ) )
 
Theorempm4.71i 389 Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
 |-  ( ph  ->  ps )   =>    |-  ( ph 
 <->  ( ph  /\  ps ) )
 
Theorempm4.71ri 390 Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.)
 |-  ( ph  ->  ps )   =>    |-  ( ph 
 <->  ( ps  /\  ph )
 )
 
Theorempm4.71d 391 Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  <->  ( ps  /\  ch ) ) )
 
Theorempm4.71rd 392 Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  <->  ( ch  /\  ps ) ) )
 
Theorempm4.24 393 Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 14-Mar-2014.)
 |-  ( ph  <->  ( ph  /\  ph )
 )
 
Theoremanidm 394 Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.)
 |-  ( ( ph  /\  ph )  <->  ph )
 
Theoremanidms 395 Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.)
 |-  ( ( ph  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theoremanidmdbi 396 Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005.)
 |-  ( ( ph  ->  ( ps  /\  ps )
 ) 
 <->  ( ph  ->  ps )
 )
 
Theoremanasss 397 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )
 
Theoremanassrs 398 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )
 
Theoremanass 399 Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch ) 
 <->  ( ph  /\  ( ps  /\  ch ) ) )
 
Theoremsylanl1 400 A syllogism inference. (Contributed by NM, 10-Mar-2005.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ( ps  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ( ( ph  /\ 
 ch )  /\  th )  ->  ta )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13615
  Copyright terms: Public domain < Previous  Next >