![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptnan | Unicode version |
Description: Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1424) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.) |
Ref | Expression |
---|---|
mptnan.min |
![]() ![]() |
mptnan.maj |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mptnan |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptnan.min |
. 2
![]() ![]() | |
2 | mptnan.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | imnani 691 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 5 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mptxor 1424 |
Copyright terms: Public domain | W3C validator |