HomeHome Intuitionistic Logic Explorer
Theorem List (p. 15 of 144)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1401-1500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
1.2.14  Truth tables: Operations on true and false constants

For classical logic, truth tables can be used to define propositional logic operations, by showing the results of those operations for all possible combinations of true (T.) and false (F.).

Although the intuitionistic logic connectives are not as simply defined, T. and F. do play similar roles as in classical logic and most theorems from classical logic continue to hold.

Here we show that our definitions and axioms produce equivalent results for T. and F. as we would get from truth tables for  /\ (conjunction aka logical 'and') wa 104,  \/ (disjunction aka logical inclusive 'or') wo 708,  -> (implies) wi 4,  -. (not) wn 3,  <-> (logical equivalence) df-bi 117, and  \/_ (exclusive or) df-xor 1376.

 
Theoremtruantru 1401 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  /\ T.  )  <-> T.  )
 
Theoremtruanfal 1402 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  /\ F.  )  <-> F.  )
 
Theoremfalantru 1403 A  /\ identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
 |-  ( ( F.  /\ T.  )  <-> F.  )
 
Theoremfalanfal 1404 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  /\ F.  )  <-> F.  )
 
Theoremtruortru 1405 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  \/ T.  )  <-> T.  )
 
Theoremtruorfal 1406 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  \/ F.  )  <-> T.  )
 
Theoremfalortru 1407 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  \/ T.  )  <-> T.  )
 
Theoremfalorfal 1408 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  \/ F.  )  <-> F.  )
 
Theoremtruimtru 1409 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  -> T.  )  <-> T.  )
 
Theoremtruimfal 1410 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  -> F.  )  <-> F.  )
 
Theoremfalimtru 1411 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  -> T.  )  <-> T.  )
 
Theoremfalimfal 1412 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  -> F.  )  <-> T.  )
 
Theoremnottru 1413 A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( -. T.  <-> F.  )
 
Theoremnotfal 1414 A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( -. F.  <-> T.  )
 
Theoremtrubitru 1415 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  <-> T.  )  <-> T.  )
 
Theoremtrubifal 1416 A  <-> identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
 |-  ( ( T.  <-> F.  )  <-> F.  )
 
Theoremfalbitru 1417 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  <-> T.  )  <-> F.  )
 
Theoremfalbifal 1418 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  <-> F.  )  <-> T.  )
 
Theoremtruxortru 1419 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( T.  \/_ T.  )  <-> F.  )
 
Theoremtruxorfal 1420 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( T.  \/_ F.  )  <-> T.  )
 
Theoremfalxortru 1421 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( F.  \/_ T.  )  <-> T.  )
 
Theoremfalxorfal 1422 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( F.  \/_ F.  )  <-> F.  )
 
1.2.15  Stoic logic indemonstrables (Chrysippus of Soli)

The Greek Stoics developed a system of logic. The Stoic Chrysippus, in particular, was often considered one of the greatest logicians of antiquity. Stoic logic is different from Aristotle's system, since it focuses on propositional logic, though later thinkers did combine the systems of the Stoics with Aristotle. Jan Lukasiewicz reports, "For anybody familiar with mathematical logic it is self-evident that the Stoic dialectic is the ancient form of modern propositional logic" ( On the history of the logic of proposition by Jan Lukasiewicz (1934), translated in: Selected Works - Edited by Ludwik Borkowski - Amsterdam, North-Holland, 1970 pp. 197-217, referenced in "History of Logic" https://www.historyoflogic.com/logic-stoics.htm). For more about Aristotle's system, see barbara and related theorems.

A key part of the Stoic logic system is a set of five "indemonstrables" assigned to Chrysippus of Soli by Diogenes Laertius, though in general it is difficult to assign specific ideas to specific thinkers. The indemonstrables are described in, for example, [Lopez-Astorga] p. 11 , [Sanford] p. 39, and [Hitchcock] p. 5. These indemonstrables are modus ponendo ponens (modus ponens) ax-mp 5, modus tollendo tollens (modus tollens) mto 662, modus ponendo tollens I mptnan 1423, modus ponendo tollens II mptxor 1424, and modus tollendo ponens (exclusive-or version) mtpxor 1426. The first is an axiom, the second is already proved; in this section we prove the other three. Since we assume or prove all of indemonstrables, the system of logic we use here is as at least as strong as the set of Stoic indemonstrables. Note that modus tollendo ponens mtpxor 1426 originally used exclusive-or, but over time the name modus tollendo ponens has increasingly referred to an inclusive-or variation, which is proved in mtpor 1425. This set of indemonstrables is not the entire system of Stoic logic.

 
Theoremmptnan 1423 Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1424) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.)
 |-  ph   &    |- 
 -.  ( ph  /\  ps )   =>    |- 
 -.  ps
 
Theoremmptxor 1424 Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or  \/_. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ph   &    |-  ( ph  \/_  ps )   =>    |- 
 -.  ps
 
Theoremmtpor 1425 Modus tollendo ponens (inclusive-or version), aka disjunctive syllogism. This is similar to mtpxor 1426, one of the five original "indemonstrables" in Stoic logic. However, in Stoic logic this rule used exclusive-or, while the name modus tollendo ponens often refers to a variant of the rule that uses inclusive-or instead. The rule says, "if  ph is not true, and  ph or  ps (or both) are true, then  ps must be true". An alternate phrasing is, "Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth". -- Sherlock Holmes (Sir Arthur Conan Doyle, 1890: The Sign of the Four, ch. 6). (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.)
 |- 
 -.  ph   &    |-  ( ph  \/  ps )   =>    |- 
 ps
 
Theoremmtpxor 1426 Modus tollendo ponens (original exclusive-or version), aka disjunctive syllogism, similar to mtpor 1425, one of the five "indemonstrables" in Stoic logic. The rule says, "if  ph is not true, and either  ph or  ps (exclusively) are true, then  ps must be true". Today the name "modus tollendo ponens" often refers to a variant, the inclusive-or version as defined in mtpor 1425. See rule 3 on [Lopez-Astorga] p. 12 (note that the "or" is the same as mptxor 1424, that is, it is exclusive-or df-xor 1376), rule 3 of [Sanford] p. 39 (where it is not as clearly stated which kind of "or" is used but it appears to be in the same sense as mptxor 1424), and rule A5 in [Hitchcock] p. 5 (exclusive-or is expressly used). (Contributed by David A. Wheeler, 4-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
 |- 
 -.  ph   &    |-  ( ph  \/_  ps )   =>    |- 
 ps
 
Theoremstoic2a 1427 Stoic logic Thema 2 version a.

Statement T2 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 2 as follows: "When from two assertibles a third follows, and from the third and one (or both) of the two another follows, then this other follows from the first two."

Bobzien uses constructs such as  ph, 
ps |-  ch; in Metamath we will represent that construct as  ph 
/\  ps  ->  ch.

This version a is without the phrase "or both"; see stoic2b 1428 for the version with the phrase "or both". We already have this rule as syldan 282, so here we show the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremstoic2b 1428 Stoic logic Thema 2 version b. See stoic2a 1427.

Version b is with the phrase "or both". We already have this rule as mpd3an3 1338, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremstoic3 1429 Stoic logic Thema 3.

Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic thema 3.

"When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )
 
Theoremstoic4a 1430 Stoic logic Thema 4 version a.

Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use  th to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1431 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  ph  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 th )  ->  ta )
 
Theoremstoic4b 1431 Stoic logic Thema 4 version b.

This is version b, which is with the phrase "or both". See stoic4a 1430 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ( ch  /\  ph  /\  ps )  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 th )  ->  ta )
 
1.2.16  Logical implication (continued)
 
Theoremsyl6an 1432 A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ch  ->  th ) )   &    |-  ( ( ps 
 /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ch  ->  ta ) )
 
Theoremsyl10 1433 A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  ( th  ->  ta )
 ) )   &    |-  ( ch  ->  ( ta  ->  et )
 )   =>    |-  ( ph  ->  ( ps  ->  ( th  ->  et ) ) )
 
Theoremexbir 1434 Exportation implication also converting head from biconditional to conditional. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ( ch 
 <-> 
 th ) )  ->  ( ph  ->  ( ps  ->  ( th  ->  ch )
 ) ) )
 
Theorem3impexp 1435 impexp 263 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  ->  th )  <->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
 
Theorem3impexpbicom 1436 3impexp 1435 with biconditional consequent of antecedent that is commuted in consequent. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  ->  ( th  <->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) )
 
Theorem3impexpbicomi 1437 Deduction form of 3impexpbicom 1436. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th 
 <->  ta ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )
 
Theoremancomsimp 1438 Closed form of ancoms 268. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
 
Theoremexpcomd 1439 Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
 
Theoremexpdcom 1440 Commuted form of expd 258. (Contributed by Alan Sare, 18-Mar-2012.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ps  ->  ( ch  ->  ( ph  ->  th ) ) )
 
Theoremsimplbi2comg 1441 Implication form of simplbi2com 1442. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( ( ph  <->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
 
Theoremsimplbi2com 1442 A deduction eliminating a conjunct, similar to simplbi2 385. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ps  ->  ph ) )
 
Theoremsyl6ci 1443 A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  th )   &    |-  ( ch  ->  ( th  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ta ) )
 
Theoremmpisyl 1444 A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  ( ps  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  th )
 
1.3  Predicate calculus mostly without distinct variables
 
1.3.1  Universal quantifier (continued)

The universal quantifier was introduced above in wal 1351 for use by df-tru 1356. See the comments in that section. In this section, we continue with the first "real" use of it.

 
Axiomax-5 1445 Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Axiomax-7 1446 Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. One of the predicate logic axioms which do not involve equality. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  ->  A. y A. x ph )
 
Axiomax-gen 1447 Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved  x  =  x, we can conclude  A. x x  =  x or even  A. y
x  =  x. Theorem spi 1534 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.)
 |-  ph   =>    |- 
 A. x ph
 
Theoremgen2 1448 Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
 |-  ph   =>    |- 
 A. x A. y ph
 
Theoremmpg 1449 Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.)
 |-  ( A. x ph  ->  ps )   &    |-  ph   =>    |- 
 ps
 
Theoremmpgbi 1450 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
 |-  ( A. x ph  <->  ps )   &    |-  ph   =>    |- 
 ps
 
Theoremmpgbir 1451 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
 |-  ( ph  <->  A. x ps )   &    |-  ps   =>    |-  ph
 
Theorema7s 1452 Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  ->  ps )   =>    |-  ( A. y A. x ph  ->  ps )
 
Theoremalimi 1453 Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x ph  ->  A. x ps )
 
Theorem2alimi 1454 Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x A. y ph  ->  A. x A. y ps )
 
Theoremalim 1455 Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 30-Mar-2008.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Theoremal2imi 1456 Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x ph 
 ->  ( A. x ps  ->  A. x ch )
 )
 
Theoremalanimi 1457 Variant of al2imi 1456 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( A. x ph 
 /\  A. x ps )  ->  A. x ch )
 
Syntaxwnf 1458 Extend wff definition to include the not-free predicate.
 wff  F/ x ph
 
Definitiondf-nf 1459 Define the not-free predicate for wffs. This is read " x is not free in  ph". Not-free means that the value of  x cannot affect the value of  ph, e.g., any occurrence of  x in  ph is effectively bound by a "for all" or something that expands to one (such as "there exists"). In particular, substitution for a variable not free in a wff does not affect its value (sbf 1775). An example of where this is used is stdpc5 1582. See nf2 1666 for an alternate definition which does not involve nested quantifiers on the same variable.

Nonfreeness is a commonly used condition, so it is useful to have a notation for it. Surprisingly, there is no common formal notation for it, so here we devise one. Our definition lets us work with the notion of nonfreeness within the logic itself rather than as a metalogical side condition.

To be precise, our definition really means "effectively not free", because it is slightly less restrictive than the usual textbook definition for "not free" (which considers syntactic freedom). For example,  x is effectively not free in the expression  x  =  x (even though  x is syntactically free in it, so would be considered "free" in the usual textbook definition) because the value of  x in the formula  x  =  x does not affect the truth of that formula (and thus substitutions will not change the result), see nfequid 1700. (Contributed by Mario Carneiro, 11-Aug-2016.)

 |-  ( F/ x ph  <->  A. x ( ph  ->  A. x ph ) )
 
Theoremnfi 1460 Deduce that  x is not free in  ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  ->  A. x ph )   =>    |- 
 F/ x ph
 
Theoremhbth 1461 No variable is (effectively) free in a theorem.

This and later "hypothesis-building" lemmas, with labels starting "hb...", allow us to construct proofs of formulas of the form  |-  ( ph  ->  A. x ph ) from smaller formulas of this form. These are useful for constructing hypotheses that state " x is (effectively) not free in  ph". (Contributed by NM, 5-Aug-1993.)

 |-  ph   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfth 1462 No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ph   =>    |- 
 F/ x ph
 
Theoremnfnth 1463 No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.)
 |- 
 -.  ph   =>    |- 
 F/ x ph
 
Theoremnftru 1464 The true constant has no free variables. (This can also be proven in one step with nfv 1526, but this proof does not use ax-17 1524.) (Contributed by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x T.
 
Theoremalimdh 1465 Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 4-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  A. x ch ) )
 
Theoremalbi 1466 Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( A. x ph  <->  A. x ps )
 )
 
Theoremalrimih 1467 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  A. x ps )
 
Theoremalbii 1468 Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x ph  <->  A. x ps )
 
Theorem2albii 1469 Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x A. y ph  <->  A. x A. y ps )
 
Theoremhbxfrbi 1470 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfbii 1471 Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( F/ x ph  <->  F/ x ps )
 
Theoremnfxfr 1472 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  <->  ps )   &    |-  F/ x ps   =>    |-  F/ x ph
 
Theoremnfxfrd 1473 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  ->  F/ x ps )   =>    |-  ( ch  ->  F/ x ph )
 
Theoremalcoms 1474 Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.)
 |-  ( A. x A. y ph  ->  ps )   =>    |-  ( A. y A. x ph  ->  ps )
 
Theoremhbal 1475 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( A. y ph  ->  A. x A. y ph )
 
Theoremalcom 1476 Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  <->  A. y A. x ph )
 
Theoremalrimdh 1477 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ch )
 )
 
Theoremalbidh 1478 Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. x ch )
 )
 
Theorem19.26 1479 Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
 |-  ( A. x (
 ph  /\  ps )  <->  (
 A. x ph  /\  A. x ps ) )
 
Theorem19.26-2 1480 Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.)
 |-  ( A. x A. y ( ph  /\  ps ) 
 <->  ( A. x A. y ph  /\  A. x A. y ps ) )
 
Theorem19.26-3an 1481 Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
 |-  ( A. x (
 ph  /\  ps  /\  ch ) 
 <->  ( A. x ph  /\ 
 A. x ps  /\  A. x ch ) )
 
Theorem19.33 1482 Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( A. x ph 
 \/  A. x ps )  ->  A. x ( ph  \/  ps ) )
 
Theoremalrot3 1483 Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( A. x A. y A. z ph  <->  A. y A. z A. x ph )
 
Theoremalrot4 1484 Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.)
 |-  ( A. x A. y A. z A. w ph  <->  A. z A. w A. x A. y ph )
 
Theoremalbiim 1485 Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  <->  ( A. x ( ph  ->  ps )  /\  A. x ( ps 
 ->  ph ) ) )
 
Theorem2albiim 1486 Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.)
 |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )
 
Theoremhband 1487 Deduction form of bound-variable hypothesis builder hban 1545. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  ( ps  ->  A. x ps )
 )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  A. x ( ps 
 /\  ch ) ) )
 
Theoremhb3and 1488 Deduction form of bound-variable hypothesis builder hb3an 1548. (Contributed by NM, 17-Feb-2013.)
 |-  ( ph  ->  ( ps  ->  A. x ps )
 )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   &    |-  ( ph  ->  ( th  ->  A. x th )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  ch  /\ 
 th )  ->  A. x ( ps  /\  ch  /\  th ) ) )
 
Theoremhbald 1489 Deduction form of bound-variable hypothesis builder hbal 1475. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  ( A. y ps  ->  A. x A. y ps ) )
 
Syntaxwex 1490 Extend wff definition to include the existential quantifier ("there exists").
 wff  E. x ph
 
Axiomax-ie1 1491  x is bound in  E. x ph. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( E. x ph  ->  A. x E. x ph )
 
Axiomax-ie2 1492 Define existential quantification.  E. x ph means "there exists at least one set  x such that  ph is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
 
Theoremhbe1 1493  x is not free in  E. x ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x ph  ->  A. x E. x ph )
 
Theoremnfe1 1494  x is not free in  E. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x E. x ph
 
Theorem19.23ht 1495 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 1-Feb-2015.)
 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
 
Theorem19.23h 1496 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.)
 |-  ( ps  ->  A. x ps )   =>    |-  ( A. x (
 ph  ->  ps )  <->  ( E. x ph 
 ->  ps ) )
 
Theoremalnex 1497 Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if  ph can be refuted for all 
x, then it is not possible to find an  x for which  ph holds" (and likewise for the converse). Comparing this with dfexdc 1499 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.)
 |-  ( A. x  -.  ph  <->  -. 
 E. x ph )
 
Theoremnex 1498 Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
 |- 
 -.  ph   =>    |- 
 -.  E. x ph
 
Theoremdfexdc 1499 Defining  E. x ph given decidability. It is common in classical logic to define  E. x ph as  -.  A. x -.  ph but in intuitionistic logic without a decidability condition, that is only an implication not an equivalence, as seen at exalim 1500. (Contributed by Jim Kingdon, 15-Mar-2018.)
 |-  (DECID 
 E. x ph  ->  ( E. x ph  <->  -.  A. x  -.  ph ) )
 
Theoremexalim 1500 One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1499. (Contributed by Jim Kingdon, 29-Jul-2018.)
 |-  ( E. x ph  ->  -.  A. x  -.  ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14370
  Copyright terms: Public domain < Previous  Next >