HomeHome Intuitionistic Logic Explorer
Theorem List (p. 15 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1401-1500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-fal 1401 Definition of the truth value "false", or "falsum", denoted by F.. See also df-tru 1398. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( F.  <->  -. T.  )
 
Theoremfal 1402 The truth value F. is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.)
 |- 
 -. F.
 
Theoremdftru2 1403 An alternate definition of "true". (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by BJ, 12-Jul-2019.) (New usage is discouraged.)
 |-  ( T.  <->  ( ph  ->  ph ) )
 
Theoremmptru 1404 Eliminate T. as an antecedent. A proposition implied by T. is true. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( T.  ->  ph )   =>    |-  ph
 
Theoremtbtru 1405 A proposition is equivalent to itself being equivalent to T.. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  ( ph  <->  ( ph  <-> T.  ) )
 
Theoremnbfal 1406 The negation of a proposition is equivalent to itself being equivalent to F.. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  ( -.  ph  <->  ( ph  <-> F.  ) )
 
Theorembitru 1407 A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  ph   =>    |-  ( ph  <-> T.  )
 
Theorembifal 1408 A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
 |- 
 -.  ph   =>    |-  ( ph  <-> F.  )
 
Theoremfalim 1409 The truth value F. implies anything. Also called the principle of explosion, or "ex falso quodlibet". (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
 |-  ( F.  ->  ph )
 
Theoremfalimd 1410 The truth value F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\ F.  )  ->  ps )
 
Theoremtrud 1411 Anything implies T.. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
 |-  ( ph  -> T.  )
 
Theoremtruan 1412 True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
 |-  ( ( T.  /\  ph )  <->  ph )
 
Theoremdfnot 1413 Given falsum, we can define the negation of a wff  ph as the statement that a contradiction follows from assuming  ph. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
 |-  ( -.  ph  <->  ( ph  -> F.  ) )
 
Theoreminegd 1414 Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\  ps )  -> F.  )   =>    |-  ( ph  ->  -. 
 ps )
 
Theorempm2.21fal 1415 If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ps )   =>    |-  ( ph  -> F.  )
 
Theorempclem6 1416 Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.)
 |-  ( ( ph  <->  ( ps  /\  -.  ph ) )  ->  -.  ps )
 
1.2.14  Logical 'xor'
 
Syntaxwxo 1417 Extend wff definition to include exclusive disjunction ('xor').
 wff  ( ph  \/_  ps )
 
Definitiondf-xor 1418 Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with  /\ (wa 104),  \/ (wo 713), and  -> (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
 
Theoremxoranor 1419 One way of defining exclusive or. Equivalent to df-xor 1418. (Contributed by Jim Kingdon and Mario Carneiro, 1-Mar-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  \/  ps )  /\  ( -.  ph  \/  -.  ps )
 ) )
 
Theoremexcxor 1420 This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) (Proof rewritten by Jim Kingdon, 5-May-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps ) ) )
 
Theoremxoror 1421 XOR implies OR. (Contributed by BJ, 19-Apr-2019.)
 |-  ( ( ph  \/_  ps )  ->  ( ph  \/  ps ) )
 
Theoremxorbi2d 1422 Deduction joining an equivalence and a left operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  \/_  ps ) 
 <->  ( th  \/_  ch ) ) )
 
Theoremxorbi1d 1423 Deduction joining an equivalence and a right operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  \/_  th )  <->  ( ch  \/_  th )
 ) )
 
Theoremxorbi12d 1424 Deduction joining two equivalences to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  \/_  th )  <->  ( ch  \/_  ta )
 ) )
 
Theoremxorbi12i 1425 Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  \/_  ch ) 
 <->  ( ps  \/_  th )
 )
 
Theoremxorbin 1426 A consequence of exclusive or. In classical logic the converse also holds. (Contributed by Jim Kingdon, 8-Mar-2018.)
 |-  ( ( ph  \/_  ps )  ->  ( ph  <->  -.  ps ) )
 
Theorempm5.18im 1427 One direction of pm5.18dc 888, which holds for all propositions, not just decidable propositions. (Contributed by Jim Kingdon, 10-Mar-2018.)
 |-  ( ( ph  <->  ps )  ->  -.  ( ph 
 <->  -.  ps ) )
 
Theoremxornbi 1428 A consequence of exclusive or. For decidable propositions this is an equivalence, as seen at xornbidc 1433. (Contributed by Jim Kingdon, 10-Mar-2018.)
 |-  ( ( ph  \/_  ps )  ->  -.  ( ph  <->  ps ) )
 
Theoremxor3dc 1429 Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 12-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph 
 <->  ps )  <->  ( ph  <->  -.  ps ) ) ) )
 
Theoremxorcom 1430  \/_ is commutative. (Contributed by David A. Wheeler, 6-Oct-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ps  \/_  ph )
 )
 
Theorempm5.15dc 1431 A decidable proposition is equivalent to a decidable proposition or its negation. Based on theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  <->  ps )  \/  ( ph  <->  -.  ps ) ) ) )
 
Theoremxor2dc 1432 Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 17-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph 
 <->  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps )
 ) ) ) )
 
Theoremxornbidc 1433 Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  \/_ 
 ps )  <->  -.  ( ph  <->  ps ) ) ) )
 
Theoremxordc 1434 Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph 
 <->  ps )  <->  ( ( ph  /\ 
 -.  ps )  \/  ( ps  /\  -.  ph )
 ) ) ) )
 
Theoremxordc1 1435 Exclusive or implies the left proposition is decidable. (Contributed by Jim Kingdon, 12-Mar-2018.)
 |-  ( ( ph  \/_  ps )  -> DECID  ph )
 
Theoremnbbndc 1436 Move negation outside of biconditional, for decidable propositions. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph 
 <->  ps )  <->  -.  ( ph  <->  ps ) ) ) )
 
Theorembiassdc 1437 Associative law for the biconditional, for decidable propositions.

The classical version (without the decidability conditions) is an axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805, and, interestingly, was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by Jim Kingdon, 4-May-2018.)

 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  (DECID 
 ch  ->  ( ( (
 ph 
 <->  ps )  <->  ch )  <->  ( ph  <->  ( ps  <->  ch ) ) ) ) ) )
 
Theorembilukdc 1438 Lukasiewicz's shortest axiom for equivalential calculus (but modified to require decidable propositions). Storrs McCall, ed., Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  ( ( (DECID  ph  /\ DECID  ps )  /\ DECID  ch )  ->  ( ( ph 
 <->  ps )  <->  ( ( ch  <->  ps )  <->  ( ph  <->  ch ) ) ) )
 
Theoremdfbi3dc 1439 An alternate definition of the biconditional for decidable propositions. Theorem *5.23 of [WhiteheadRussell] p. 124, but with decidability conditions. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  <->  ps ) 
 <->  ( ( ph  /\  ps )  \/  ( -.  ph  /\ 
 -.  ps ) ) ) ) )
 
Theorempm5.24dc 1440 Theorem *5.24 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  (
 ( ph  /\  ps )  \/  ( -.  ph  /\  -.  ps ) )  <->  ( ( ph  /\ 
 -.  ps )  \/  ( ps  /\  -.  ph )
 ) ) ) )
 
Theoremxordidc 1441 Conjunction distributes over exclusive-or, for decidable propositions. This is one way to interpret the distributive law of multiplication over addition in modulo 2 arithmetic. (Contributed by Jim Kingdon, 14-Jul-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  (DECID 
 ch  ->  ( ( ph  /\  ( ps  \/_  ch ) )  <->  ( ( ph  /\ 
 ps )  \/_  ( ph  /\  ch ) ) ) ) ) )
 
Theoremanxordi 1442 Conjunction distributes over exclusive-or. (Contributed by Mario Carneiro and Jim Kingdon, 7-Oct-2018.)
 |-  ( ( ph  /\  ( ps  \/_  ch ) )  <-> 
 ( ( ph  /\  ps )  \/_  ( ph  /\  ch ) ) )
 
1.2.15  Truth tables: Operations on true and false constants

For classical logic, truth tables can be used to define propositional logic operations, by showing the results of those operations for all possible combinations of true (T.) and false (F.).

Although the intuitionistic logic connectives are not as simply defined, T. and F. do play similar roles as in classical logic and most theorems from classical logic continue to hold.

Here we show that our definitions and axioms produce equivalent results for T. and F. as we would get from truth tables for  /\ (conjunction aka logical 'and') wa 104,  \/ (disjunction aka logical inclusive 'or') wo 713,  -> (implies) wi 4,  -. (not) wn 3,  <-> (logical equivalence) df-bi 117, and  \/_ (exclusive or) df-xor 1418.

 
Theoremtruantru 1443 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  /\ T.  )  <-> T.  )
 
Theoremtruanfal 1444 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  /\ F.  )  <-> F.  )
 
Theoremfalantru 1445 A  /\ identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
 |-  ( ( F.  /\ T.  )  <-> F.  )
 
Theoremfalanfal 1446 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  /\ F.  )  <-> F.  )
 
Theoremtruortru 1447 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  \/ T.  )  <-> T.  )
 
Theoremtruorfal 1448 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  \/ F.  )  <-> T.  )
 
Theoremfalortru 1449 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  \/ T.  )  <-> T.  )
 
Theoremfalorfal 1450 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  \/ F.  )  <-> F.  )
 
Theoremtruimtru 1451 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  -> T.  )  <-> T.  )
 
Theoremtruimfal 1452 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  -> F.  )  <-> F.  )
 
Theoremfalimtru 1453 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  -> T.  )  <-> T.  )
 
Theoremfalimfal 1454 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  -> F.  )  <-> T.  )
 
Theoremnottru 1455 A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( -. T.  <-> F.  )
 
Theoremnotfal 1456 A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( -. F.  <-> T.  )
 
Theoremtrubitru 1457 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  <-> T.  )  <-> T.  )
 
Theoremtrubifal 1458 A  <-> identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
 |-  ( ( T.  <-> F.  )  <-> F.  )
 
Theoremfalbitru 1459 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  <-> T.  )  <-> F.  )
 
Theoremfalbifal 1460 A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  <-> F.  )  <-> T.  )
 
Theoremtruxortru 1461 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( T.  \/_ T.  )  <-> F.  )
 
Theoremtruxorfal 1462 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( T.  \/_ F.  )  <-> T.  )
 
Theoremfalxortru 1463 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( F.  \/_ T.  )  <-> T.  )
 
Theoremfalxorfal 1464 A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ( ( F.  \/_ F.  )  <-> F.  )
 
1.2.16  Stoic logic indemonstrables (Chrysippus of Soli)

The Greek Stoics developed a system of logic. The Stoic Chrysippus, in particular, was often considered one of the greatest logicians of antiquity. Stoic logic is different from Aristotle's system, since it focuses on propositional logic, though later thinkers did combine the systems of the Stoics with Aristotle. Jan Lukasiewicz reports, "For anybody familiar with mathematical logic it is self-evident that the Stoic dialectic is the ancient form of modern propositional logic" ( On the history of the logic of proposition by Jan Lukasiewicz (1934), translated in: Selected Works - Edited by Ludwik Borkowski - Amsterdam, North-Holland, 1970 pp. 197-217, referenced in "History of Logic" https://www.historyoflogic.com/logic-stoics.htm). For more about Aristotle's system, see barbara and related theorems.

A key part of the Stoic logic system is a set of five "indemonstrables" assigned to Chrysippus of Soli by Diogenes Laertius, though in general it is difficult to assign specific ideas to specific thinkers. The indemonstrables are described in, for example, [Lopez-Astorga] p. 11 , [Sanford] p. 39, and [Hitchcock] p. 5. These indemonstrables are modus ponendo ponens (modus ponens) ax-mp 5, modus tollendo tollens (modus tollens) mto 666, modus ponendo tollens I mptnan 1465, modus ponendo tollens II mptxor 1466, and modus tollendo ponens (exclusive-or version) mtpxor 1468. The first is an axiom, the second is already proved; in this section we prove the other three. Since we assume or prove all of indemonstrables, the system of logic we use here is as at least as strong as the set of Stoic indemonstrables. Note that modus tollendo ponens mtpxor 1468 originally used exclusive-or, but over time the name modus tollendo ponens has increasingly referred to an inclusive-or variation, which is proved in mtpor 1467. This set of indemonstrables is not the entire system of Stoic logic.

 
Theoremmptnan 1465 Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1466) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.)
 |-  ph   &    |- 
 -.  ( ph  /\  ps )   =>    |- 
 -.  ps
 
Theoremmptxor 1466 Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or  \/_. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 2-Mar-2018.)
 |-  ph   &    |-  ( ph  \/_  ps )   =>    |- 
 -.  ps
 
Theoremmtpor 1467 Modus tollendo ponens (inclusive-or version), aka disjunctive syllogism. This is similar to mtpxor 1468, one of the five original "indemonstrables" in Stoic logic. However, in Stoic logic this rule used exclusive-or, while the name modus tollendo ponens often refers to a variant of the rule that uses inclusive-or instead. The rule says, "if  ph is not true, and  ph or  ps (or both) are true, then  ps must be true". An alternate phrasing is, "Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth". -- Sherlock Holmes (Sir Arthur Conan Doyle, 1890: The Sign of the Four, ch. 6). (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.)
 |- 
 -.  ph   &    |-  ( ph  \/  ps )   =>    |- 
 ps
 
Theoremmtpxor 1468 Modus tollendo ponens (original exclusive-or version), aka disjunctive syllogism, similar to mtpor 1467, one of the five "indemonstrables" in Stoic logic. The rule says, "if  ph is not true, and either  ph or  ps (exclusively) are true, then  ps must be true". Today the name "modus tollendo ponens" often refers to a variant, the inclusive-or version as defined in mtpor 1467. See rule 3 on [Lopez-Astorga] p. 12 (note that the "or" is the same as mptxor 1466, that is, it is exclusive-or df-xor 1418), rule 3 of [Sanford] p. 39 (where it is not as clearly stated which kind of "or" is used but it appears to be in the same sense as mptxor 1466), and rule A5 in [Hitchcock] p. 5 (exclusive-or is expressly used). (Contributed by David A. Wheeler, 4-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
 |- 
 -.  ph   &    |-  ( ph  \/_  ps )   =>    |- 
 ps
 
Theoremstoic1a 1469 Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1469 and stoic1b 1470 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

 |-  ( ( ph  /\  ps )  ->  th )   =>    |-  ( ( ph  /\  -.  th )  ->  -.  ps )
 
Theoremstoic1b 1470 Stoic logic Thema 1 (part b). The other part of thema 1 of Stoic logic; see stoic1a 1469. (Contributed by David A. Wheeler, 16-Feb-2019.)
 |-  ( ( ph  /\  ps )  ->  th )   =>    |-  ( ( ps  /\  -. 
 th )  ->  -.  ph )
 
Theoremstoic2a 1471 Stoic logic Thema 2 version a.

Statement T2 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 2 as follows: "When from two assertibles a third follows, and from the third and one (or both) of the two another follows, then this other follows from the first two."

Bobzien uses constructs such as  ph, 
ps |-  ch; in Metamath we will represent that construct as  ph 
/\  ps  ->  ch.

This version a is without the phrase "or both"; see stoic2b 1472 for the version with the phrase "or both". We already have this rule as syldan 282, so here we show the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremstoic2b 1472 Stoic logic Thema 2 version b. See stoic2a 1471.

Version b is with the phrase "or both". We already have this rule as mpd3an3 1372, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremstoic3 1473 Stoic logic Thema 3.

Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic thema 3.

"When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )
 
Theoremstoic4a 1474 Stoic logic Thema 4 version a.

Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use  th to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1475 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  ph  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 th )  ->  ta )
 
Theoremstoic4b 1475 Stoic logic Thema 4 version b.

This is version b, which is with the phrase "or both". See stoic4a 1474 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ( ch  /\  ph  /\  ps )  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 th )  ->  ta )
 
1.2.17  Logical implication (continued)
 
Theoremsyl6an 1476 A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ch  ->  th ) )   &    |-  ( ( ps 
 /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ch  ->  ta ) )
 
Theoremsyl10 1477 A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  ( th  ->  ta )
 ) )   &    |-  ( ch  ->  ( ta  ->  et )
 )   =>    |-  ( ph  ->  ( ps  ->  ( th  ->  et ) ) )
 
Theorema1ddd 1478 Triple deduction introducing an antecedent to a wff. Deduction associated with a1dd 48. Double deduction associated with a1d 22. Triple deduction associated with ax-1 6 and a1i 9. (Contributed by Jeff Hankins, 4-Aug-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ta ) ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theoremexbir 1479 Exportation implication also converting head from biconditional to conditional. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ( ch 
 <-> 
 th ) )  ->  ( ph  ->  ( ps  ->  ( th  ->  ch )
 ) ) )
 
Theorem3impexp 1480 impexp 263 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  ->  th )  <->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
 
Theorem3impexpbicom 1481 3impexp 1480 with biconditional consequent of antecedent that is commuted in consequent. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  ->  ( th  <->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) )
 
Theorem3impexpbicomi 1482 Deduction form of 3impexpbicom 1481. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th 
 <->  ta ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )
 
Theoremancomsimp 1483 Closed form of ancoms 268. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
 
Theoremexpcomd 1484 Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
 
Theoremexpdcom 1485 Commuted form of expd 258. (Contributed by Alan Sare, 18-Mar-2012.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ps  ->  ( ch  ->  ( ph  ->  th ) ) )
 
Theoremsimplbi2comg 1486 Implication form of simplbi2com 1487. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( ( ph  <->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
 
Theoremsimplbi2com 1487 A deduction eliminating a conjunct, similar to simplbi2 385. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ps  ->  ph ) )
 
Theoremsyl6ci 1488 A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  th )   &    |-  ( ch  ->  ( th  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ta ) )
 
Theoremmpisyl 1489 A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  ( ps  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  th )
 
Theoremdcfromnotnotr 1490 The decidability of a proposition 
ps follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 848), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ps  \/  -. 
 ps ) )   &    |-  ( -.  -.  ph  ->  ph )   =>    |- DECID  ps
 
Theoremdcfromcon 1491 The decidability of a proposition 
ch follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 858), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> T.  )   &    |-  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 )   =>    |- DECID  ch
 
Theoremdcfrompeirce 1492 The decidability of a proposition 
ch follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 919), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
 |-  ( ph  <->  ( ch  \/  -. 
 ch ) )   &    |-  ( ps 
 <-> F.  )   &    |-  ( ( (
 ph  ->  ps )  ->  ph )  -> 
 ph )   =>    |- DECID  ch
 
1.3  Predicate calculus mostly without distinct variables
 
1.3.1  Universal quantifier (continued)

The universal quantifier was introduced above in wal 1393 for use by df-tru 1398. See the comments in that section. In this section, we continue with the first "real" use of it.

 
Axiomax-5 1493 Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Axiomax-7 1494 Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. One of the predicate logic axioms which do not involve equality. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  ->  A. y A. x ph )
 
Axiomax-gen 1495 Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved  x  =  x, we can conclude  A. x x  =  x or even  A. y
x  =  x. Theorem spi 1582 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.)
 |-  ph   =>    |- 
 A. x ph
 
Theoremgen2 1496 Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
 |-  ph   =>    |- 
 A. x A. y ph
 
Theoremmpg 1497 Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.)
 |-  ( A. x ph  ->  ps )   &    |-  ph   =>    |- 
 ps
 
Theoremmpgbi 1498 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
 |-  ( A. x ph  <->  ps )   &    |-  ph   =>    |- 
 ps
 
Theoremmpgbir 1499 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
 |-  ( ph  <->  A. x ps )   &    |-  ps   =>    |-  ph
 
Theorema7s 1500 Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  ->  ps )   =>    |-  ( A. y A. x ph  ->  ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >