ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imnani Unicode version

Theorem imnani 692
Description: Express implication in terms of conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1  |-  -.  ( ph  /\  ps )
Assertion
Ref Expression
imnani  |-  ( ph  ->  -.  ps )

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2  |-  -.  ( ph  /\  ps )
2 imnan 691 . 2  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
31, 2mpbir 146 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mptnan  1434  eueq3dc  2934  dtruex  4591  canth  5871  nntri2  6547  nndcel  6553
  Copyright terms: Public domain W3C validator