![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imnani | Unicode version |
Description: Express implication in terms of conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imnani |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imnan 690 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbir 146 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mptnan 1423 eueq3dc 2912 dtruex 4559 canth 5829 nntri2 6495 nndcel 6501 |
Copyright terms: Public domain | W3C validator |