ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2bbiidc Unicode version

Theorem necon2bbiidc 2405
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2bbii.1  |-  (DECID  A  =  B  ->  ( ph  <->  A  =/=  B ) )
Assertion
Ref Expression
necon2bbiidc  |-  (DECID  A  =  B  ->  ( A  =  B  <->  -.  ph ) )

Proof of Theorem necon2bbiidc
StepHypRef Expression
1 necon2bbii.1 . . . 4  |-  (DECID  A  =  B  ->  ( ph  <->  A  =/=  B ) )
21bicomd 140 . . 3  |-  (DECID  A  =  B  ->  ( A  =/=  B  <->  ph ) )
32necon1bbiidc 2401 . 2  |-  (DECID  A  =  B  ->  ( -.  ph  <->  A  =  B ) )
43bicomd 140 1  |-  (DECID  A  =  B  ->  ( A  =  B  <->  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 829    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830  df-ne 2341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator