HomeHome Intuitionistic Logic Explorer
Theorem List (p. 25 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2401-2500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnelelne 2401 Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.)
 |-  ( -.  A  e.  B  ->  ( C  e.  B  ->  C  =/=  A ) )
 
Theoremnfne 2402 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  =/=  B
 
Theoremnfned 2403 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  =/=  B )
 
2.1.4.2  Negated membership
 
Syntaxwnel 2404 Extend wff notation to include negated membership.
 wff  A  e/  B
 
Definitiondf-nel 2405 Define negated membership. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  e/  B  <->  -.  A  e.  B )
 
Theoremneli 2406 Inference associated with df-nel 2405. (Contributed by BJ, 7-Jul-2018.)
 |-  A  e/  B   =>    |-  -.  A  e.  B
 
Theoremnelir 2407 Inference associated with df-nel 2405. (Contributed by BJ, 7-Jul-2018.)
 |- 
 -.  A  e.  B   =>    |-  A  e/  B
 
Theoremneleq1 2408 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( A  e/  C  <->  B 
 e/  C ) )
 
Theoremneleq2 2409 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( C  e/  A  <->  C 
 e/  B ) )
 
Theoremneleq12d 2410 Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  e/  C  <->  B  e/  D ) )
 
Theoremnfnel 2411 Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  e/  B
 
Theoremnfneld 2412 Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  e/  B )
 
Theoremelnelne1 2413 Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
 |-  ( ( A  e.  B  /\  A  e/  C )  ->  B  =/=  C )
 
Theoremelnelne2 2414 Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
 |-  ( ( A  e.  C  /\  B  e/  C )  ->  A  =/=  B )
 
Theoremnelcon3d 2415 Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.)
 |-  ( ph  ->  ( A  e.  B  ->  C  e.  D ) )   =>    |-  ( ph  ->  ( C  e/  D  ->  A  e/  B ) )
 
Theoremelnelall 2416 A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
 |-  ( A  e.  B  ->  ( A  e/  B  -> 
 ph ) )
 
2.1.5  Restricted quantification
 
Syntaxwral 2417 Extend wff notation to include restricted universal quantification.
 wff  A. x  e.  A  ph
 
Syntaxwrex 2418 Extend wff notation to include restricted existential quantification.
 wff  E. x  e.  A  ph
 
Syntaxwreu 2419 Extend wff notation to include restricted existential uniqueness.
 wff  E! x  e.  A  ph
 
Syntaxwrmo 2420 Extend wff notation to include restricted "at most one."
 wff  E* x  e.  A  ph
 
Syntaxcrab 2421 Extend class notation to include the restricted class abstraction (class builder).
 class  { x  e.  A  |  ph }
 
Definitiondf-ral 2422 Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.)
 |-  ( A. x  e.  A  ph  <->  A. x ( x  e.  A  ->  ph )
 )
 
Definitiondf-rex 2423 Define restricted existential quantification. Special case of Definition 4.15(4) of [TakeutiZaring] p. 22. (Contributed by NM, 30-Aug-1993.)
 |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
 )
 
Definitiondf-reu 2424 Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.)
 |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rmo 2425 Define restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rab 2426 Define a restricted class abstraction (class builder), which is the class of all  x in  A such that  ph is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.)
 |- 
 { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
 
Theoremralnex 2427 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( A. x  e.  A  -.  ph  <->  -.  E. x  e.  A  ph )
 
Theoremrexnalim 2428 Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
 |-  ( E. x  e.  A  -.  ph  ->  -. 
 A. x  e.  A  ph )
 
Theoremdfrex2dc 2429 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.)
 |-  (DECID 
 E. x  e.  A  ph 
 ->  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
 )
 
Theoremralexim 2430 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
 |-  ( A. x  e.  A  ph  ->  -.  E. x  e.  A  -.  ph )
 
Theoremrexalim 2431 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
 |-  ( E. x  e.  A  ph  ->  -.  A. x  e.  A  -.  ph )
 
Theoremralbida 2432 Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbida 2433 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidva 2434* Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidva 2435* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbid 2436 Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbid 2437 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidv 2438* Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidv 2439* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidv2 2440* Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
 |-  ( ph  ->  (
 ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch )
 ) )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexbidv2 2441* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremralbii 2442 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
 
Theoremrexbii 2443 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
 
Theorem2ralbii 2444 Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )
 
Theorem2rexbii 2445 Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
 
Theoremralbii2 2446 Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
 |-  ( ( x  e.  A  ->  ph )  <->  ( x  e.  B  ->  ps )
 )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ps )
 
Theoremrexbii2 2447 Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
 |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )
 
Theoremraleqbii 2448 Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
 |-  A  =  B   &    |-  ( ps 
 <->  ch )   =>    |-  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
 
Theoremrexeqbii 2449 Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
 |-  A  =  B   &    |-  ( ps 
 <->  ch )   =>    |-  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
 
Theoremralbiia 2450 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
 
Theoremrexbiia 2451 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
 
Theorem2rexbiia 2452* Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
 
Theoremr2alf 2453* Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y
 ( ( x  e.  A  /\  y  e.  B )  ->  ph )
 )
 
Theoremr2exf 2454* Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y
 ( ( x  e.  A  /\  y  e.  B )  /\  ph )
 )
 
Theoremr2al 2455* Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y
 ( ( x  e.  A  /\  y  e.  B )  ->  ph )
 )
 
Theoremr2ex 2456* Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
 |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y
 ( ( x  e.  A  /\  y  e.  B )  /\  ph )
 )
 
Theorem2ralbida 2457* Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2ralbidva 2458* Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2rexbidva 2459* Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps 
 <-> 
 E. x  e.  A  E. y  e.  B  ch ) )
 
Theorem2ralbidv 2460* Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2rexbidv 2461* Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps 
 <-> 
 E. x  e.  A  E. y  e.  B  ch ) )
 
Theoremrexralbidv 2462* Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch ) )
 
Theoremralinexa 2463 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
 |-  ( A. x  e.  A  ( ph  ->  -. 
 ps )  <->  -.  E. x  e.  A  ( ph  /\  ps ) )
 
Theoremrisset 2464* Two ways to say " A belongs to  B." (Contributed by NM, 22-Nov-1994.)
 |-  ( A  e.  B  <->  E. x  e.  B  x  =  A )
 
Theoremhbral 2465 Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.)
 |-  ( y  e.  A  ->  A. x  y  e.  A )   &    |-  ( ph  ->  A. x ph )   =>    |-  ( A. y  e.  A  ph  ->  A. x A. y  e.  A  ph )
 
Theoremhbra1 2466  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.)
 |-  ( A. x  e.  A  ph  ->  A. x A. x  e.  A  ph )
 
Theoremnfra1 2467  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x A. x  e.  A  ph
 
Theoremnfraldxy 2468* Not-free for restricted universal quantification where  x and  y are distinct. See nfraldya 2470 for a version with  y and  A distinct instead. (Contributed by Jim Kingdon, 29-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y  e.  A  ps )
 
Theoremnfrexdxy 2469* Not-free for restricted existential quantification where  x and  y are distinct. See nfrexdya 2471 for a version with  y and  A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y  e.  A  ps )
 
Theoremnfraldya 2470* Not-free for restricted universal quantification where  y and  A are distinct. See nfraldxy 2468 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y  e.  A  ps )
 
Theoremnfrexdya 2471* Not-free for restricted existential quantification where  y and  A are distinct. See nfrexdxy 2469 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y  e.  A  ps )
 
Theoremnfralxy 2472* Not-free for restricted universal quantification where  x and  y are distinct. See nfralya 2474 for a version with  y and 
A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
Theoremnfrexxy 2473* Not-free for restricted existential quantification where  x and  y are distinct. See nfrexya 2475 for a version with  y and 
A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E. y  e.  A  ph
 
Theoremnfralya 2474* Not-free for restricted universal quantification where  y and  A are distinct. See nfralxy 2472 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
Theoremnfrexya 2475* Not-free for restricted existential quantification where  y and  A are distinct. See nfrexxy 2473 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E. y  e.  A  ph
 
Theoremnfra2xy 2476* Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
 |- 
 F/ y A. x  e.  A  A. y  e.  B  ph
 
Theoremnfre1 2477  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x E. x  e.  A  ph
 
Theoremr3al 2478* Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
 |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
 )
 
Theoremalral 2479 Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
 |-  ( A. x ph  ->  A. x  e.  A  ph )
 
Theoremrexex 2480 Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
 |-  ( E. x  e.  A  ph  ->  E. x ph )
 
Theoremrsp 2481 Restricted specialization. (Contributed by NM, 17-Oct-1996.)
 |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph )
 )
 
Theoremrspe 2482 Restricted specialization. (Contributed by NM, 12-Oct-1999.)
 |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )
 
Theoremrsp2 2483 Restricted specialization. (Contributed by NM, 11-Feb-1997.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( ( x  e.  A  /\  y  e.  B )  -> 
 ph ) )
 
Theoremrsp2e 2484 Restricted specialization. (Contributed by FL, 4-Jun-2012.)
 |-  ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  E. x  e.  A  E. y  e.  B  ph )
 
Theoremrspec 2485 Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
 |- 
 A. x  e.  A  ph   =>    |-  ( x  e.  A  -> 
 ph )
 
Theoremrgen 2486 Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
 |-  ( x  e.  A  -> 
 ph )   =>    |- 
 A. x  e.  A  ph
 
Theoremrgen2a 2487* Generalization rule for restricted quantification. Note that  x and  y are not required to be disjoint. This proof illustrates the use of dvelim 1993. Usage of rgen2 2519 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
 |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )   =>    |-  A. x  e.  A  A. y  e.  A  ph
 
Theoremrgenw 2488 Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
 |-  ph   =>    |- 
 A. x  e.  A  ph
 
Theoremrgen2w 2489 Generalization rule for restricted quantification. Note that  x and  y needn't be distinct. (Contributed by NM, 18-Jun-2014.)
 |-  ph   =>    |- 
 A. x  e.  A  A. y  e.  B  ph
 
Theoremmprg 2490 Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. x  e.  A  ph  ->  ps )   &    |-  ( x  e.  A  ->  ph )   =>    |- 
 ps
 
Theoremmprgbir 2491 Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
 |-  ( ph  <->  A. x  e.  A  ps )   &    |-  ( x  e.  A  ->  ps )   =>    |-  ph
 
Theoremralim 2492 Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  ->  ( A. x  e.  A  ph  ->  A. x  e.  A  ps ) )
 
Theoremralimi2 2493 Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
 |-  ( ( x  e.  A  ->  ph )  ->  ( x  e.  B  ->  ps ) )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  B  ps )
 
Theoremralimia 2494 Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
 
Theoremralimiaa 2495 Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( x  e.  A  /\  ph )  ->  ps )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
 
Theoremralimi 2496 Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x  e.  A  ph 
 ->  A. x  e.  A  ps )
 
Theorem2ralimi 2497 Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  ->  A. x  e.  A  A. y  e.  B  ps )
 
Theoremral2imi 2498 Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x  e.  A  ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdaa 2499 Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdva 2500* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13424
  Copyright terms: Public domain < Previous  Next >