HomeHome Intuitionistic Logic Explorer
Theorem List (p. 25 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2401-2500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeqnetrrd 2401 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A  =/=  C )   =>    |-  ( ph  ->  B  =/=  C )
 
Theoremneeqtri 2402 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
 |-  A  =/=  B   &    |-  B  =  C   =>    |-  A  =/=  C
 
Theoremneeqtrd 2403 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
 |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A  =/=  C )
 
Theoremneeqtrri 2404 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
 |-  A  =/=  B   &    |-  C  =  B   =>    |-  A  =/=  C
 
Theoremneeqtrrd 2405 Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
 |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A  =/=  C )
 
Theoremeqnetrrid 2406 B chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.)
 |-  B  =  A   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  A  =/=  C )
 
Theorem3netr3d 2407 Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
 |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C  =/=  D )
 
Theorem3netr4d 2408 Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
 |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C  =/=  D )
 
Theorem3netr3g 2409 Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.)
 |-  ( ph  ->  A  =/=  B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C  =/=  D )
 
Theorem3netr4g 2410 Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.)
 |-  ( ph  ->  A  =/=  B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C  =/=  D )
 
Theoremnecon3abii 2411 Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
 |-  ( A  =  B  <->  ph )   =>    |-  ( A  =/=  B  <->  -.  ph )
 
Theoremnecon3bbii 2412 Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.)
 |-  ( ph  <->  A  =  B )   =>    |-  ( -.  ph  <->  A  =/=  B )
 
Theoremnecon3bii 2413 Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.)
 |-  ( A  =  B  <->  C  =  D )   =>    |-  ( A  =/=  B  <->  C  =/=  D )
 
Theoremnecon3abid 2414 Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.)
 |-  ( ph  ->  ( A  =  B  <->  ps ) )   =>    |-  ( ph  ->  ( A  =/=  B  <->  -.  ps ) )
 
Theoremnecon3bbid 2415 Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.)
 |-  ( ph  ->  ( ps 
 <->  A  =  B ) )   =>    |-  ( ph  ->  ( -.  ps  <->  A  =/=  B ) )
 
Theoremnecon3bid 2416 Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =  B  <->  C  =  D ) )   =>    |-  ( ph  ->  ( A  =/=  B  <->  C  =/=  D ) )
 
Theoremnecon3ad 2417 Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
 |-  ( ph  ->  ( ps  ->  A  =  B ) )   =>    |-  ( ph  ->  ( A  =/=  B  ->  -.  ps ) )
 
Theoremnecon3bd 2418 Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
 |-  ( ph  ->  ( A  =  B  ->  ps ) )   =>    |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )
 
Theoremnecon3d 2419 Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.)
 |-  ( ph  ->  ( A  =  B  ->  C  =  D ) )   =>    |-  ( ph  ->  ( C  =/=  D  ->  A  =/=  B ) )
 
Theoremnesym 2420 Characterization of inequality in terms of reversed equality (see bicom 140). (Contributed by BJ, 7-Jul-2018.)
 |-  ( A  =/=  B  <->  -.  B  =  A )
 
Theoremnesymi 2421 Inference associated with nesym 2420. (Contributed by BJ, 7-Jul-2018.)
 |-  A  =/=  B   =>    |-  -.  B  =  A
 
Theoremnesymir 2422 Inference associated with nesym 2420. (Contributed by BJ, 7-Jul-2018.)
 |- 
 -.  A  =  B   =>    |-  B  =/=  A
 
Theoremnecon3i 2423 Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.)
 |-  ( A  =  B  ->  C  =  D )   =>    |-  ( C  =/=  D  ->  A  =/=  B )
 
Theoremnecon3ai 2424 Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( A  =/=  B  ->  -.  ph )
 
Theoremnecon3bi 2425 Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
 |-  ( A  =  B  -> 
 ph )   =>    |-  ( -.  ph  ->  A  =/=  B )
 
Theoremnecon1aidc 2426 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 15-May-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  ->  A  =  B ) )   =>    |-  (DECID 
 ph  ->  ( A  =/=  B 
 ->  ph ) )
 
Theoremnecon1bidc 2427 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 15-May-2018.)
 |-  (DECID  A  =  B  ->  ( A  =/=  B  ->  ph ) )   =>    |-  (DECID  A  =  B  ->  ( -.  ph  ->  A  =  B ) )
 
Theoremnecon1idc 2428 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  ( A  =/=  B  ->  C  =  D )   =>    |-  (DECID  A  =  B  ->  ( C  =/=  D  ->  A  =  B ) )
 
Theoremnecon2ai 2429 Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.)
 |-  ( A  =  B  ->  -.  ph )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremnecon2bi 2430 Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
 |-  ( ph  ->  A  =/=  B )   =>    |-  ( A  =  B  ->  -.  ph )
 
Theoremnecon2i 2431 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
 |-  ( A  =  B  ->  C  =/=  D )   =>    |-  ( C  =  D  ->  A  =/=  B )
 
Theoremnecon2ad 2432 Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.)
 |-  ( ph  ->  ( A  =  B  ->  -. 
 ps ) )   =>    |-  ( ph  ->  ( ps  ->  A  =/=  B ) )
 
Theoremnecon2bd 2433 Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
 |-  ( ph  ->  ( ps  ->  A  =/=  B ) )   =>    |-  ( ph  ->  ( A  =  B  ->  -. 
 ps ) )
 
Theoremnecon2d 2434 Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
 |-  ( ph  ->  ( A  =  B  ->  C  =/=  D ) )   =>    |-  ( ph  ->  ( C  =  D  ->  A  =/=  B ) )
 
Theoremnecon1abiidc 2435 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  <->  A  =  B ) )   =>    |-  (DECID 
 ph  ->  ( A  =/=  B  <->  ph ) )
 
Theoremnecon1bbiidc 2436 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  (DECID  A  =  B  ->  ( A  =/=  B  <->  ph ) )   =>    |-  (DECID  A  =  B  ->  ( -.  ph  <->  A  =  B ) )
 
Theoremnecon1abiddc 2437 Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  <->  A  =  B ) ) )   =>    |-  ( ph  ->  (DECID  ps 
 ->  ( A  =/=  B  <->  ps ) ) )
 
Theoremnecon1bbiddc 2438 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  ( A  =/=  B  <->  ps ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  ( -.  ps  <->  A  =  B ) ) )
 
Theoremnecon2abiidc 2439 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  (DECID 
 ph  ->  ( A  =  B 
 <->  -.  ph ) )   =>    |-  (DECID 
 ph  ->  ( ph  <->  A  =/=  B ) )
 
Theoremnecon2bbiidc 2440 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  (DECID  A  =  B  ->  (
 ph 
 <->  A  =/=  B ) )   =>    |-  (DECID  A  =  B  ->  ( A  =  B  <->  -.  ph ) )
 
Theoremnecon2abiddc 2441 Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  ( A  =  B  <->  -. 
 ps ) ) )   =>    |-  ( ph  ->  (DECID  ps  ->  ( ps  <->  A  =/=  B ) ) )
 
Theoremnecon2bbiddc 2442 Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  ( ps  <->  A  =/=  B ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  ( A  =  B  <->  -.  ps ) ) )
 
Theoremnecon4aidc 2443 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  (DECID  A  =  B  ->  ( A  =/=  B  ->  -.  ph ) )   =>    |-  (DECID  A  =  B  ->  (
 ph  ->  A  =  B ) )
 
Theoremnecon4idc 2444 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
 |-  (DECID  A  =  B  ->  ( A  =/=  B  ->  C  =/=  D ) )   =>    |-  (DECID  A  =  B  ->  ( C  =  D  ->  A  =  B ) )
 
Theoremnecon4addc 2445 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 17-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  ( A  =/=  B  ->  -.  ps ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  ( ps  ->  A  =  B ) ) )
 
Theoremnecon4bddc 2446 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 17-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  ->  A  =/=  B ) ) )   =>    |-  ( ph  ->  (DECID  ps  ->  ( A  =  B  ->  ps ) ) )
 
Theoremnecon4ddc 2447 Contrapositive inference for inequality. (Contributed by Jim Kingdon, 17-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  ( A  =/=  B  ->  C  =/=  D ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  ( C  =  D  ->  A  =  B ) ) )
 
Theoremnecon4abiddc 2448 Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 18-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  (DECID  ps  ->  ( A  =/=  B  <->  -.  ps ) ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  (DECID  ps  ->  ( A  =  B  <->  ps ) ) ) )
 
Theoremnecon4bbiddc 2449 Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  (DECID  A  =  B  ->  ( -.  ps  <->  A  =/=  B ) ) ) )   =>    |-  ( ph  ->  (DECID  ps 
 ->  (DECID  A  =  B  ->  ( ps  <->  A  =  B ) ) ) )
 
Theoremnecon4biddc 2450 Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  (DECID  C  =  D  ->  ( A  =/=  B  <->  C  =/=  D ) ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  (DECID  C  =  D  ->  ( A  =  B 
 <->  C  =  D ) ) ) )
 
Theoremnecon1addc 2451 Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  ->  A  =  B ) ) )   =>    |-  ( ph  ->  (DECID  ps  ->  ( A  =/=  B  ->  ps ) ) )
 
Theoremnecon1bddc 2452 Contrapositive deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  ( A  =/=  B  ->  ps )
 ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  ( -. 
 ps  ->  A  =  B ) ) )
 
Theoremnecon1ddc 2453 Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
 |-  ( ph  ->  (DECID  A  =  B  ->  ( A  =/=  B  ->  C  =  D ) ) )   =>    |-  ( ph  ->  (DECID  A  =  B  ->  ( C  =/=  D 
 ->  A  =  B ) ) )
 
Theoremneneqad 2454 If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2396. One-way deduction form of df-ne 2376. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremnebidc 2455 Contraposition law for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
 |-  (DECID  A  =  B  ->  (DECID  C  =  D  ->  (
 ( A  =  B  <->  C  =  D )  <->  ( A  =/=  B  <->  C  =/=  D ) ) ) )
 
Theorempm13.18 2456 Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
 |-  ( ( A  =  B  /\  A  =/=  C )  ->  B  =/=  C )
 
Theorempm13.181 2457 Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
 |-  ( ( A  =  B  /\  B  =/=  C )  ->  A  =/=  C )
 
Theorempm2.21ddne 2458 A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ps )
 
Theoremnecom 2459 Commutation of inequality. (Contributed by NM, 14-May-1999.)
 |-  ( A  =/=  B  <->  B  =/=  A )
 
Theoremnecomi 2460 Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
 |-  A  =/=  B   =>    |-  B  =/=  A
 
Theoremnecomd 2461 Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
 |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  B  =/=  A )
 
Theoremneanior 2462 A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
 |-  ( ( A  =/=  B 
 /\  C  =/=  D ) 
 <->  -.  ( A  =  B  \/  C  =  D ) )
 
Theoremne3anior 2463 A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013.) (Proof rewritten by Jim Kingdon, 19-May-2018.)
 |-  ( ( A  =/=  B 
 /\  C  =/=  D  /\  E  =/=  F )  <->  -.  ( A  =  B  \/  C  =  D  \/  E  =  F )
 )
 
Theoremnemtbir 2464 An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
 |-  A  =/=  B   &    |-  ( ph 
 <->  A  =  B )   =>    |-  -.  ph
 
Theoremnelne1 2465 Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.)
 |-  ( ( A  e.  B  /\  -.  A  e.  C )  ->  B  =/=  C )
 
Theoremnelne2 2466 Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.)
 |-  ( ( A  e.  C  /\  -.  B  e.  C )  ->  A  =/=  B )
 
Theoremnelelne 2467 Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.)
 |-  ( -.  A  e.  B  ->  ( C  e.  B  ->  C  =/=  A ) )
 
Theoremnfne 2468 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  =/=  B
 
Theoremnfned 2469 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  =/=  B )
 
2.1.4.2  Negated membership
 
Syntaxwnel 2470 Extend wff notation to include negated membership.
 wff  A  e/  B
 
Definitiondf-nel 2471 Define negated membership. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  e/  B  <->  -.  A  e.  B )
 
Theoremneli 2472 Inference associated with df-nel 2471. (Contributed by BJ, 7-Jul-2018.)
 |-  A  e/  B   =>    |-  -.  A  e.  B
 
Theoremnelir 2473 Inference associated with df-nel 2471. (Contributed by BJ, 7-Jul-2018.)
 |- 
 -.  A  e.  B   =>    |-  A  e/  B
 
Theoremneleq1 2474 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( A  e/  C  <->  B 
 e/  C ) )
 
Theoremneleq2 2475 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( C  e/  A  <->  C 
 e/  B ) )
 
Theoremneleq12d 2476 Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  e/  C  <->  B  e/  D ) )
 
Theoremnfnel 2477 Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  e/  B
 
Theoremnfneld 2478 Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  e/  B )
 
Theoremelnelne1 2479 Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
 |-  ( ( A  e.  B  /\  A  e/  C )  ->  B  =/=  C )
 
Theoremelnelne2 2480 Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
 |-  ( ( A  e.  C  /\  B  e/  C )  ->  A  =/=  B )
 
Theoremnelcon3d 2481 Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.)
 |-  ( ph  ->  ( A  e.  B  ->  C  e.  D ) )   =>    |-  ( ph  ->  ( C  e/  D  ->  A  e/  B ) )
 
Theoremelnelall 2482 A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
 |-  ( A  e.  B  ->  ( A  e/  B  -> 
 ph ) )
 
2.1.5  Restricted quantification
 
Syntaxwral 2483 Extend wff notation to include restricted universal quantification.
 wff  A. x  e.  A  ph
 
Syntaxwrex 2484 Extend wff notation to include restricted existential quantification.
 wff  E. x  e.  A  ph
 
Syntaxwreu 2485 Extend wff notation to include restricted existential uniqueness.
 wff  E! x  e.  A  ph
 
Syntaxwrmo 2486 Extend wff notation to include restricted "at most one".
 wff  E* x  e.  A  ph
 
Syntaxcrab 2487 Extend class notation to include the restricted class abstraction (class builder).
 class  { x  e.  A  |  ph }
 
Definitiondf-ral 2488 Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.)
 |-  ( A. x  e.  A  ph  <->  A. x ( x  e.  A  ->  ph )
 )
 
Definitiondf-rex 2489 Define restricted existential quantification. Special case of Definition 4.15(4) of [TakeutiZaring] p. 22. (Contributed by NM, 30-Aug-1993.)
 |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
 )
 
Definitiondf-reu 2490 Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.)
 |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rmo 2491 Define restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rab 2492 Define a restricted class abstraction (class builder), which is the class of all  x in  A such that  ph is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.)
 |- 
 { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
 
Theoremralnex 2493 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( A. x  e.  A  -.  ph  <->  -.  E. x  e.  A  ph )
 
Theoremrexnalim 2494 Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
 |-  ( E. x  e.  A  -.  ph  ->  -. 
 A. x  e.  A  ph )
 
Theoremnnral 2495 The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1671. (Contributed by Jim Kingdon, 1-Aug-2024.)
 |-  ( -.  -.  A. x  e.  A  ph  ->  A. x  e.  A  -.  -.  ph )
 
Theoremdfrex2dc 2496 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.)
 |-  (DECID 
 E. x  e.  A  ph 
 ->  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
 )
 
Theoremralexim 2497 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
 |-  ( A. x  e.  A  ph  ->  -.  E. x  e.  A  -.  ph )
 
Theoremrexalim 2498 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 17-Aug-2018.)
 |-  ( E. x  e.  A  ph  ->  -.  A. x  e.  A  -.  ph )
 
Theoremralbida 2499 Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbida 2500 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >