ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.67dc Unicode version

Theorem pm4.67dc 877
Description: Theorem *4.67 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.)
Assertion
Ref Expression
pm4.67dc  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( -. 
ph  ->  -.  ps )  <->  ( -.  ph  /\  ps )
) ) )

Proof of Theorem pm4.67dc
StepHypRef Expression
1 dcn 832 . 2  |-  (DECID  ph  -> DECID  -.  ph )
2 pm4.63dc 876 . 2  |-  (DECID  -.  ph  ->  (DECID  ps  ->  ( -.  ( -.  ph  ->  -.  ps )  <->  ( -.  ph  /\ 
ps ) ) ) )
31, 2syl 14 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( -. 
ph  ->  -.  ps )  <->  ( -.  ph  /\  ps )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator