ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imanst Unicode version

Theorem imanst 878
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.)
Assertion
Ref Expression
imanst  |-  (STAB  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )

Proof of Theorem imanst
StepHypRef Expression
1 notnot 619 . . . 4  |-  ( ps 
->  -.  -.  ps )
2 df-stab 821 . . . . 5  |-  (STAB  ps  <->  ( -.  -.  ps  ->  ps )
)
32biimpi 119 . . . 4  |-  (STAB  ps  ->  ( -.  -.  ps  ->  ps ) )
41, 3impbid2 142 . . 3  |-  (STAB  ps  ->  ( ps  <->  -.  -.  ps )
)
54imbi2d 229 . 2  |-  (STAB  ps  ->  ( ( ph  ->  ps ) 
<->  ( ph  ->  -.  -.  ps ) ) )
6 imnan 680 . 2  |-  ( (
ph  ->  -.  -.  ps )  <->  -.  ( ph  /\  -.  ps ) )
75, 6bitrdi 195 1  |-  (STAB  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  STAB wstab 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-stab 821
This theorem is referenced by:  imandc  879  dfss4st  3355
  Copyright terms: Public domain W3C validator