ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p1e7 GIF version

Theorem 6p1e7 8995
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
6p1e7 (6 + 1) = 7

Proof of Theorem 6p1e7
StepHypRef Expression
1 df-7 8921 . 2 7 = (6 + 1)
21eqcomi 2169 1 (6 + 1) = 7
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5842  1c1 7754   + caddc 7756  6c6 8912  7c7 8913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-7 8921
This theorem is referenced by:  9t8e72  9449
  Copyright terms: Public domain W3C validator