HomeHome Intuitionistic Logic Explorer
Theorem List (p. 91 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9001-9100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem4p3e7 9001 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
(4 + 3) = 7
 
Theorem4p4e8 9002 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
(4 + 4) = 8
 
Theorem5p2e7 9003 5 + 2 = 7. (Contributed by NM, 11-May-2004.)
(5 + 2) = 7
 
Theorem5p3e8 9004 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
(5 + 3) = 8
 
Theorem5p4e9 9005 5 + 4 = 9. (Contributed by NM, 11-May-2004.)
(5 + 4) = 9
 
Theorem6p2e8 9006 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
(6 + 2) = 8
 
Theorem6p3e9 9007 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
(6 + 3) = 9
 
Theorem7p2e9 9008 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
(7 + 2) = 9
 
Theorem1t1e1 9009 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
(1 · 1) = 1
 
Theorem2t1e2 9010 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.)
(2 · 1) = 2
 
Theorem2t2e4 9011 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.)
(2 · 2) = 4
 
Theorem3t1e3 9012 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
(3 · 1) = 3
 
Theorem3t2e6 9013 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.)
(3 · 2) = 6
 
Theorem3t3e9 9014 3 times 3 equals 9. (Contributed by NM, 11-May-2004.)
(3 · 3) = 9
 
Theorem4t2e8 9015 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.)
(4 · 2) = 8
 
Theorem2t0e0 9016 2 times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · 0) = 0
 
Theorem4d2e2 9017 One half of four is two. (Contributed by NM, 3-Sep-1999.)
(4 / 2) = 2
 
Theorem2nn 9018 2 is a positive integer. (Contributed by NM, 20-Aug-2001.)
2 ∈ ℕ
 
Theorem3nn 9019 3 is a positive integer. (Contributed by NM, 8-Jan-2006.)
3 ∈ ℕ
 
Theorem4nn 9020 4 is a positive integer. (Contributed by NM, 8-Jan-2006.)
4 ∈ ℕ
 
Theorem5nn 9021 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 ∈ ℕ
 
Theorem6nn 9022 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
6 ∈ ℕ
 
Theorem7nn 9023 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
7 ∈ ℕ
 
Theorem8nn 9024 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
8 ∈ ℕ
 
Theorem9nn 9025 9 is a positive integer. (Contributed by NM, 21-Oct-2012.)
9 ∈ ℕ
 
Theorem1lt2 9026 1 is less than 2. (Contributed by NM, 24-Feb-2005.)
1 < 2
 
Theorem2lt3 9027 2 is less than 3. (Contributed by NM, 26-Sep-2010.)
2 < 3
 
Theorem1lt3 9028 1 is less than 3. (Contributed by NM, 26-Sep-2010.)
1 < 3
 
Theorem3lt4 9029 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 4
 
Theorem2lt4 9030 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 4
 
Theorem1lt4 9031 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 4
 
Theorem4lt5 9032 4 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 5
 
Theorem3lt5 9033 3 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 5
 
Theorem2lt5 9034 2 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 5
 
Theorem1lt5 9035 1 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 5
 
Theorem5lt6 9036 5 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 < 6
 
Theorem4lt6 9037 4 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 6
 
Theorem3lt6 9038 3 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 6
 
Theorem2lt6 9039 2 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 6
 
Theorem1lt6 9040 1 is less than 6. (Contributed by NM, 19-Oct-2012.)
1 < 6
 
Theorem6lt7 9041 6 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
6 < 7
 
Theorem5lt7 9042 5 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 < 7
 
Theorem4lt7 9043 4 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 7
 
Theorem3lt7 9044 3 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 7
 
Theorem2lt7 9045 2 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 7
 
Theorem1lt7 9046 1 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 7
 
Theorem7lt8 9047 7 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
7 < 8
 
Theorem6lt8 9048 6 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
6 < 8
 
Theorem5lt8 9049 5 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 < 8
 
Theorem4lt8 9050 4 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 8
 
Theorem3lt8 9051 3 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 8
 
Theorem2lt8 9052 2 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 8
 
Theorem1lt8 9053 1 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 8
 
Theorem8lt9 9054 8 is less than 9. (Contributed by Mario Carneiro, 19-Feb-2014.)
8 < 9
 
Theorem7lt9 9055 7 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
7 < 9
 
Theorem6lt9 9056 6 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
6 < 9
 
Theorem5lt9 9057 5 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
5 < 9
 
Theorem4lt9 9058 4 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
4 < 9
 
Theorem3lt9 9059 3 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
3 < 9
 
Theorem2lt9 9060 2 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
2 < 9
 
Theorem1lt9 9061 1 is less than 9. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 9-Mar-2015.)
1 < 9
 
Theorem0ne2 9062 0 is not equal to 2. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≠ 2
 
Theorem1ne2 9063 1 is not equal to 2. (Contributed by NM, 19-Oct-2012.)
1 ≠ 2
 
Theorem1ap2 9064 1 is apart from 2. (Contributed by Jim Kingdon, 29-Oct-2022.)
1 # 2
 
Theorem1le2 9065 1 is less than or equal to 2 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
1 ≤ 2
 
Theorem2cnne0 9066 2 is a nonzero complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
(2 ∈ ℂ ∧ 2 ≠ 0)
 
Theorem2rene0 9067 2 is a nonzero real number (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 ∈ ℝ ∧ 2 ≠ 0)
 
Theorem1le3 9068 1 is less than or equal to 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
1 ≤ 3
 
Theoremneg1mulneg1e1 9069 -1 · -1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(-1 · -1) = 1
 
Theoremhalfre 9070 One-half is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 / 2) ∈ ℝ
 
Theoremhalfcn 9071 One-half is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 / 2) ∈ ℂ
 
Theoremhalfgt0 9072 One-half is greater than zero. (Contributed by NM, 24-Feb-2005.)
0 < (1 / 2)
 
Theoremhalfge0 9073 One-half is not negative. (Contributed by AV, 7-Jun-2020.)
0 ≤ (1 / 2)
 
Theoremhalflt1 9074 One-half is less than one. (Contributed by NM, 24-Feb-2005.)
(1 / 2) < 1
 
Theorem1mhlfehlf 9075 Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017.)
(1 − (1 / 2)) = (1 / 2)
 
Theorem8th4div3 9076 An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.)
((1 / 8) · (4 / 3)) = (1 / 6)
 
Theoremhalfpm6th 9077 One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.)
(((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
 
Theoremit0e0 9078 i times 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(i · 0) = 0
 
Theorem2mulicn 9079 (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ∈ ℂ
 
Theoremiap0 9080 The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
i # 0
 
Theorem2muliap0 9081 2 · i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
(2 · i) # 0
 
Theorem2muline0 9082 (2 · i) ≠ 0. See also 2muliap0 9081. (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ≠ 0
 
4.4.5  Simple number properties
 
Theoremhalfcl 9083 Closure of half of a number (common case). (Contributed by NM, 1-Jan-2006.)
(𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
 
Theoremrehalfcl 9084 Real closure of half. (Contributed by NM, 1-Jan-2006.)
(𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
 
Theoremhalf0 9085 Half of a number is zero iff the number is zero. (Contributed by NM, 20-Apr-2006.)
(𝐴 ∈ ℂ → ((𝐴 / 2) = 0 ↔ 𝐴 = 0))
 
Theorem2halves 9086 Two halves make a whole. (Contributed by NM, 11-Apr-2005.)
(𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
 
Theoremhalfpos2 9087 A number is positive iff its half is positive. (Contributed by NM, 10-Apr-2005.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
 
Theoremhalfpos 9088 A positive number is greater than its half. (Contributed by NM, 28-Oct-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴))
 
Theoremhalfnneg2 9089 A number is nonnegative iff its half is nonnegative. (Contributed by NM, 9-Dec-2005.)
(𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
 
Theoremhalfaddsubcl 9090 Closure of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ))
 
Theoremhalfaddsub 9091 Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
 
Theoremlt2halves 9092 A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < 𝐶))
 
Theoremaddltmul 9093 Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
 
Theoremnominpos 9094* There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
 
Theoremavglt1 9095 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
 
Theoremavglt2 9096 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
 
Theoremavgle1 9097 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ ((𝐴 + 𝐵) / 2)))
 
Theoremavgle2 9098 Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
 
Theorem2timesd 9099 Two times a number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴))
 
Theoremtimes2d 9100 A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >