HomeHome Intuitionistic Logic Explorer
Theorem List (p. 91 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9001-9100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.4.7  Nonnegative integers (as a subset of complex numbers)
 
Syntaxcn0 9001 Extend class notation to include the class of nonnegative integers.
class 0
 
Definitiondf-n0 9002 Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
0 = (ℕ ∪ {0})
 
Theoremelnn0 9003 Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.)
(𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
 
Theoremnnssnn0 9004 Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
ℕ ⊆ ℕ0
 
Theoremnn0ssre 9005 Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
0 ⊆ ℝ
 
Theoremnn0sscn 9006 Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
0 ⊆ ℂ
 
Theoremnn0ex 9007 The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.)
0 ∈ V
 
Theoremnnnn0 9008 A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
 
Theoremnnnn0i 9009 A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
𝑁 ∈ ℕ       𝑁 ∈ ℕ0
 
Theoremnn0re 9010 A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ0𝐴 ∈ ℝ)
 
Theoremnn0cn 9011 A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ0𝐴 ∈ ℂ)
 
Theoremnn0rei 9012 A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
𝐴 ∈ ℕ0       𝐴 ∈ ℝ
 
Theoremnn0cni 9013 A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.)
𝐴 ∈ ℕ0       𝐴 ∈ ℂ
 
Theoremdfn2 9014 The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
ℕ = (ℕ0 ∖ {0})
 
Theoremelnnne0 9015 The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
 
Theorem0nn0 9016 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
0 ∈ ℕ0
 
Theorem1nn0 9017 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
1 ∈ ℕ0
 
Theorem2nn0 9018 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
2 ∈ ℕ0
 
Theorem3nn0 9019 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
3 ∈ ℕ0
 
Theorem4nn0 9020 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
4 ∈ ℕ0
 
Theorem5nn0 9021 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
5 ∈ ℕ0
 
Theorem6nn0 9022 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
6 ∈ ℕ0
 
Theorem7nn0 9023 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
7 ∈ ℕ0
 
Theorem8nn0 9024 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
8 ∈ ℕ0
 
Theorem9nn0 9025 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
9 ∈ ℕ0
 
Theoremnn0ge0 9026 A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
 
Theoremnn0nlt0 9027 A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℕ0 → ¬ 𝐴 < 0)
 
Theoremnn0ge0i 9028 Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ ℕ0       0 ≤ 𝑁
 
Theoremnn0le0eq0 9029 A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.)
(𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
 
Theoremnn0p1gt0 9030 A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
 
Theoremnnnn0addcl 9031 A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
 
Theoremnn0nnaddcl 9032 A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
 
Theorem0mnnnnn0 9033 The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
(𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
 
Theoremun0addcl 9034 If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   𝑇 = (𝑆 ∪ {0})    &   ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)       ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
 
Theoremun0mulcl 9035 If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   𝑇 = (𝑆 ∪ {0})    &   ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)       ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)
 
Theoremnn0addcl 9036 Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
 
Theoremnn0mulcl 9037 Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
 
Theoremnn0addcli 9038 Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑀 + 𝑁) ∈ ℕ0
 
Theoremnn0mulcli 9039 Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑀 · 𝑁) ∈ ℕ0
 
Theoremnn0p1nn 9040 A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
 
Theorempeano2nn0 9041 Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
 
Theoremnnm1nn0 9042 A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
 
Theoremelnn0nn 9043 The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ))
 
Theoremelnnnn0 9044 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
 
Theoremelnnnn0b 9045 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
 
Theoremelnnnn0c 9046 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
 
Theoremnn0addge1 9047 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁))
 
Theoremnn0addge2 9048 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴))
 
Theoremnn0addge1i 9049 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   𝑁 ∈ ℕ0       𝐴 ≤ (𝐴 + 𝑁)
 
Theoremnn0addge2i 9050 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   𝑁 ∈ ℕ0       𝐴 ≤ (𝑁 + 𝐴)
 
Theoremnn0le2xi 9051 A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ ℕ0       𝑁 ≤ (2 · 𝑁)
 
Theoremnn0lele2xi 9052 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝑁𝑀𝑁 ≤ (2 · 𝑀))
 
Theoremnn0supp 9053 Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
 
Theoremnnnn0d 9054 A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℕ0)
 
Theoremnn0red 9055 A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℝ)
 
Theoremnn0cnd 9056 A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℂ)
 
Theoremnn0ge0d 9057 A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑 → 0 ≤ 𝐴)
 
Theoremnn0addcld 9058 Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
 
Theoremnn0mulcld 9059 Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)
 
Theoremnn0readdcl 9060 Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremnn0ge2m1nn 9061 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
 
Theoremnn0ge2m1nn0 9062 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
 
Theoremnn0nndivcl 9063 Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
 
4.4.8  Extended nonnegative integers

The function values of the hash (set size) function are either nonnegative integers or positive infinity. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers *, see df-xr 7828.

 
Syntaxcxnn0 9064 The set of extended nonnegative integers.
class 0*
 
Definitiondf-xnn0 9065 Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers *, see df-xr 7828. If we assumed excluded middle, this would be essentially the same as as defined at df-nninf 7015 but in its absence the relationship between the two is more complicated. (Contributed by AV, 10-Dec-2020.)
0* = (ℕ0 ∪ {+∞})
 
Theoremelxnn0 9066 An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
 
Theoremnn0ssxnn0 9067 The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
0 ⊆ ℕ0*
 
Theoremnn0xnn0 9068 A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
 
Theoremxnn0xr 9069 An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
 
Theorem0xnn0 9070 Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
0 ∈ ℕ0*
 
Theorempnf0xnn0 9071 Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
+∞ ∈ ℕ0*
 
Theoremnn0nepnf 9072 No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0𝐴 ≠ +∞)
 
Theoremnn0xnn0d 9073 A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℕ0*)
 
Theoremnn0nepnfd 9074 No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ≠ +∞)
 
Theoremxnn0nemnf 9075 No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0*𝐴 ≠ -∞)
 
Theoremxnn0xrnemnf 9076 The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
 
Theoremxnn0nnn0pnf 9077 An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
 
4.4.9  Integers (as a subset of complex numbers)
 
Syntaxcz 9078 Extend class notation to include the class of integers.
class
 
Definitiondf-z 9079 Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.)
ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
 
Theoremelz 9080 Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
 
Theoremnnnegz 9081 The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
(𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
 
Theoremzre 9082 An integer is a real. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
 
Theoremzcn 9083 An integer is a complex number. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
 
Theoremzrei 9084 An integer is a real number. (Contributed by NM, 14-Jul-2005.)
𝐴 ∈ ℤ       𝐴 ∈ ℝ
 
Theoremzssre 9085 The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
ℤ ⊆ ℝ
 
Theoremzsscn 9086 The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
ℤ ⊆ ℂ
 
Theoremzex 9087 The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
ℤ ∈ V
 
Theoremelnnz 9088 Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
 
Theorem0z 9089 Zero is an integer. (Contributed by NM, 12-Jan-2002.)
0 ∈ ℤ
 
Theorem0zd 9090 Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 0 ∈ ℤ)
 
Theoremelnn0z 9091 Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
 
Theoremelznn0nn 9092 Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
 
Theoremelznn0 9093 Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
 
Theoremelznn 9094 Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
(𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0)))
 
Theoremnnssz 9095 Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
ℕ ⊆ ℤ
 
Theoremnn0ssz 9096 Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
0 ⊆ ℤ
 
Theoremnnz 9097 A positive integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
 
Theoremnn0z 9098 A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ ℕ0𝑁 ∈ ℤ)
 
Theoremnnzi 9099 A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ ℕ       𝑁 ∈ ℤ
 
Theoremnn0zi 9100 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ ℕ0       𝑁 ∈ ℤ
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >