| Intuitionistic Logic Explorer Theorem List (p. 91 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lt2msq 9001 | Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) | ||
| Theorem | ltdiv2 9002 | Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) | ||
| Theorem | ltrec1 9003 | Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐴) < 𝐵 ↔ (1 / 𝐵) < 𝐴)) | ||
| Theorem | lerec2 9004 | Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴))) | ||
| Theorem | ledivdiv 9005 | Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.) |
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))) | ||
| Theorem | lediv2 9006 | Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) | ||
| Theorem | ltdiv23 9007 | Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | ||
| Theorem | lediv23 9008 | Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵)) | ||
| Theorem | lediv12a 9009 | Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.) |
| ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | ||
| Theorem | lediv2a 9010 | Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) | ||
| Theorem | reclt1 9011 | The reciprocal of a positive number less than 1 is greater than 1. (Contributed by NM, 23-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) | ||
| Theorem | recgt1 9012 | The reciprocal of a positive number greater than 1 is less than 1. (Contributed by NM, 28-Dec-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1)) | ||
| Theorem | recgt1i 9013 | The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) | ||
| Theorem | recp1lt1 9014 | Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) | ||
| Theorem | recreclt 9015 | Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴)) | ||
| Theorem | le2msq 9016 | The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
| Theorem | msq11 9017 | The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | ledivp1 9018 | Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴) | ||
| Theorem | squeeze0 9019* | If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) | ||
| Theorem | ltp1i 9020 | A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 < (𝐴 + 1) | ||
| Theorem | recgt0i 9021 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (1 / 𝐴)) | ||
| Theorem | recgt0ii 9022 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (1 / 𝐴) | ||
| Theorem | prodgt0i 9023 | Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐵) | ||
| Theorem | prodge0i 9024 | Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ 𝐵) | ||
| Theorem | divgt0i 9025 | The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 / 𝐵)) | ||
| Theorem | divge0i 9026 | The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 / 𝐵)) | ||
| Theorem | ltreci 9027 | The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) | ||
| Theorem | lereci 9028 | The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) | ||
| Theorem | lt2msqi 9029 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) | ||
| Theorem | le2msqi 9030 | The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
| Theorem | msq11i 9031 | The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | divgt0i2i 9032 | The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐵 ⇒ ⊢ (0 < 𝐴 → 0 < (𝐴 / 𝐵)) | ||
| Theorem | ltrecii 9033 | The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)) | ||
| Theorem | divgt0ii 9034 | The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 / 𝐵) | ||
| Theorem | ltmul1i 9035 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
| Theorem | ltdiv1i 9036 | Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) | ||
| Theorem | ltmuldivi 9037 | 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | ||
| Theorem | ltmul2i 9038 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) | ||
| Theorem | lemul1i 9039 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
| Theorem | lemul2i 9040 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) | ||
| Theorem | ltdiv23i 9041 | Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 < 𝐵 ∧ 0 < 𝐶) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | ||
| Theorem | ltdiv23ii 9042 | Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐵 & ⊢ 0 < 𝐶 ⇒ ⊢ ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵) | ||
| Theorem | ltmul1ii 9043 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
| Theorem | ltdiv1ii 9044 | Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)) | ||
| Theorem | ltp1d 9045 | A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) | ||
| Theorem | lep1d 9046 | A number is less than or equal to itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 + 1)) | ||
| Theorem | ltm1d 9047 | A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 1) < 𝐴) | ||
| Theorem | lem1d 9048 | A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) | ||
| Theorem | recgt0d 9049 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 / 𝐴)) | ||
| Theorem | divgt0d 9050 | The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) | ||
| Theorem | mulgt1d 9051 | The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
| Theorem | lemulge11d 9052 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 · 𝐵)) | ||
| Theorem | lemulge12d 9053 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐵 · 𝐴)) | ||
| Theorem | lemul1ad 9054 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | ||
| Theorem | lemul2ad 9055 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) | ||
| Theorem | ltmul12ad 9056 | Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) | ||
| Theorem | lemul12ad 9057 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) | ||
| Theorem | lemul12bd 9058 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐷) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) | ||
| Theorem | mulle0r 9059 | Multiplying a nonnegative number by a nonpositive number yields a nonpositive number. (Contributed by Jim Kingdon, 28-Oct-2021.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 0 ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ≤ 0) | ||
| Theorem | lbreu 9060* | If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | ||
| Theorem | lbcl 9061* | If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆) | ||
| Theorem | lble 9062* | If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) | ||
| Theorem | lbinf 9063* | If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) | ||
| Theorem | lbinfcl 9064* | If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | lbinfle 9065* | If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | suprubex 9066* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprlubex 9067* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
| Theorem | suprnubex 9068* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
| Theorem | suprleubex 9069* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
| Theorem | negiso 9070 | Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) | ||
| Theorem | dfinfre 9071* | The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥 ∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) | ||
| Theorem | sup3exmid 9072* | If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.) |
| ⊢ ((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤 ∈ 𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑢 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝑢 𝑦 < 𝑧))) ⇒ ⊢ DECID 𝜑 | ||
| Theorem | crap0 9073 | The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0)) | ||
| Theorem | creur 9074* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | creui 9075* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | cju 9076* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | ||
| Theorem | ofnegsub 9077 | Function analogue of negsub 8362. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 + ((𝐴 × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) | ||
| Syntax | cn 9078 | Extend class notation to include the class of positive integers. |
| class ℕ | ||
| Definition | df-inn 9079* | Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 9080 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.) |
| ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | dfnn2 9080* | Definition of the set of positive integers. Another name for df-inn 9079. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | peano5nni 9081* | Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴) | ||
| Theorem | nnssre 9082 | The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ ℕ ⊆ ℝ | ||
| Theorem | nnsscn 9083 | The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℕ ⊆ ℂ | ||
| Theorem | nnex 9084 | The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℕ ∈ V | ||
| Theorem | nnre 9085 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | ||
| Theorem | nncn 9086 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | ||
| Theorem | nnrei 9087 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | nncni 9088 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | 1nn 9089 | Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| ⊢ 1 ∈ ℕ | ||
| Theorem | peano2nn 9090 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | nnred 9091 | A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nncnd 9092 | A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | peano2nnd 9093 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | nnind 9094* | Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9098 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nnindALT 9095* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 9094 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nn1m1nn 9096 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | ||
| Theorem | nn1suc 9097* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → 𝜒) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜃) | ||
| Theorem | nnaddcl 9098 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcl 9099 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcli 9100 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℕ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |