| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version | ||
| Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1550 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-g.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| ax-gen | ⊢ ∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | vx | . 2 setvar 𝑥 | |
| 3 | 1, 2 | wal 1362 | 1 wff ∀𝑥𝜑 |
| Colors of variables: wff set class |
| This axiom is referenced by: gen2 1464 mpg 1465 mpgbi 1466 mpgbir 1467 hbth 1477 19.23h 1512 19.9ht 1655 stdpc6 1717 equveli 1773 cesare 2149 camestres 2150 calemes 2161 ceqsralv 2794 vtocl2 2819 euxfr2dc 2949 sbcth 3003 sbciegf 3021 csbiegf 3128 sbcnestg 3138 csbnestg 3139 csbnest1g 3140 int0 3889 mpteq2ia 4120 mpteq2da 4123 ssopab2i 4313 relssi 4755 xpidtr 5061 iotaexab 5238 funcnvsn 5304 funinsn 5308 tfrlem7 6384 tfri1 6432 sucinc 6512 findcard 6958 findcard2 6959 findcard2s 6960 fiintim 7001 fisseneq 7004 frec2uzrand 10514 frec2uzf1od 10515 frecfzennn 10535 hashinfom 10887 zfz1iso 10950 fclim 11476 mopnset 14184 metuex 14187 distop 14405 ch2var 15497 strcollnf 15715 |
| Copyright terms: Public domain | W3C validator |