Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version |
Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1524 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-g.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
ax-gen | ⊢ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . 2 setvar 𝑥 | |
3 | 1, 2 | wal 1341 | 1 wff ∀𝑥𝜑 |
Colors of variables: wff set class |
This axiom is referenced by: gen2 1438 mpg 1439 mpgbi 1440 mpgbir 1441 hbth 1451 19.23h 1486 19.9ht 1629 stdpc6 1691 equveli 1747 cesare 2118 camestres 2119 calemes 2130 ceqsralv 2756 vtocl2 2780 euxfr2dc 2910 sbcth 2963 sbciegf 2981 csbiegf 3087 sbcnestg 3097 csbnestg 3098 csbnest1g 3099 int0 3837 mpteq2ia 4067 mpteq2da 4070 ssopab2i 4254 relssi 4694 xpidtr 4993 funcnvsn 5232 funinsn 5236 tfrlem7 6281 tfri1 6329 sucinc 6409 findcard 6850 findcard2 6851 findcard2s 6852 fiintim 6890 fisseneq 6893 frec2uzrand 10336 frec2uzf1od 10337 frecfzennn 10357 hashinfom 10687 zfz1iso 10750 fclim 11231 distop 12685 ch2var 13608 strcollnf 13827 |
Copyright terms: Public domain | W3C validator |