| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version | ||
| Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1560 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-g.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| ax-gen | ⊢ ∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | vx | . 2 setvar 𝑥 | |
| 3 | 1, 2 | wal 1371 | 1 wff ∀𝑥𝜑 |
| Colors of variables: wff set class |
| This axiom is referenced by: gen2 1474 mpg 1475 mpgbi 1476 mpgbir 1477 hbth 1487 19.23h 1522 19.9ht 1665 stdpc6 1727 equveli 1783 cesare 2159 camestres 2160 calemes 2171 ceqsralv 2804 vtocl2 2829 euxfr2dc 2959 sbcth 3013 sbciegf 3031 csbiegf 3138 sbcnestg 3148 csbnestg 3149 csbnest1g 3150 int0 3901 mpteq2ia 4134 mpteq2da 4137 ssopab2i 4328 relssi 4770 xpidtr 5078 iotaexab 5255 funcnvsn 5324 funinsn 5328 tfrlem7 6410 tfri1 6458 sucinc 6538 findcard 6992 findcard2 6993 findcard2s 6994 fiintim 7035 fisseneq 7038 frec2uzrand 10557 frec2uzf1od 10558 frecfzennn 10578 hashinfom 10930 zfz1iso 10993 fclim 11649 mopnset 14358 metuex 14361 distop 14601 ch2var 15777 strcollnf 15995 |
| Copyright terms: Public domain | W3C validator |