| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version | ||
| Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1582 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-g.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| ax-gen | ⊢ ∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | vx | . 2 setvar 𝑥 | |
| 3 | 1, 2 | wal 1393 | 1 wff ∀𝑥𝜑 |
| Colors of variables: wff set class |
| This axiom is referenced by: gen2 1496 mpg 1497 mpgbi 1498 mpgbir 1499 hbth 1509 19.23h 1544 19.9ht 1687 stdpc6 1749 equveli 1805 cesare 2182 camestres 2183 calemes 2194 ceqsralv 2831 vtocl2 2856 euxfr2dc 2988 sbcth 3042 sbciegf 3060 csbiegf 3168 sbcnestg 3178 csbnestg 3179 csbnest1g 3180 int0 3937 mpteq2ia 4170 mpteq2da 4173 ssopab2i 4366 relssi 4810 xpidtr 5119 iotaexab 5297 funcnvsn 5366 funinsn 5370 tfrlem7 6469 tfri1 6517 sucinc 6599 findcard 7058 findcard2 7059 findcard2s 7060 fiintim 7101 fisseneq 7104 frec2uzrand 10635 frec2uzf1od 10636 frecfzennn 10656 hashinfom 11008 zfz1iso 11071 fclim 11813 mopnset 14524 metuex 14527 distop 14767 ch2var 16155 strcollnf 16372 |
| Copyright terms: Public domain | W3C validator |