![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version |
Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1547 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-g.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
ax-gen | ⊢ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . 2 setvar 𝑥 | |
3 | 1, 2 | wal 1362 | 1 wff ∀𝑥𝜑 |
Colors of variables: wff set class |
This axiom is referenced by: gen2 1461 mpg 1462 mpgbi 1463 mpgbir 1464 hbth 1474 19.23h 1509 19.9ht 1652 stdpc6 1714 equveli 1770 cesare 2146 camestres 2147 calemes 2158 ceqsralv 2791 vtocl2 2816 euxfr2dc 2946 sbcth 3000 sbciegf 3018 csbiegf 3125 sbcnestg 3135 csbnestg 3136 csbnest1g 3137 int0 3885 mpteq2ia 4116 mpteq2da 4119 ssopab2i 4309 relssi 4751 xpidtr 5057 iotaexab 5234 funcnvsn 5300 funinsn 5304 tfrlem7 6372 tfri1 6420 sucinc 6500 findcard 6946 findcard2 6947 findcard2s 6948 fiintim 6987 fisseneq 6990 frec2uzrand 10479 frec2uzf1od 10480 frecfzennn 10500 hashinfom 10852 zfz1iso 10915 fclim 11440 mopnset 14051 metuex 14054 distop 14264 ch2var 15329 strcollnf 15547 |
Copyright terms: Public domain | W3C validator |