![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version |
Description: Rule of Generalization. The postulated inference rule of predicate calculus. See e.g. Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1481 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-g.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
ax-gen | ⊢ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . 2 setvar 𝑥 | |
3 | 1, 2 | wal 1294 | 1 wff ∀𝑥𝜑 |
Colors of variables: wff set class |
This axiom is referenced by: gen2 1391 mpg 1392 mpgbi 1393 mpgbir 1394 hbth 1404 19.23h 1439 19.9ht 1584 stdpc6 1643 equveli 1696 cesare 2059 camestres 2060 calemes 2071 ceqsralv 2664 vtocl2 2688 euxfr2dc 2814 sbcth 2867 sbciegf 2884 csbiegf 2985 sbcnestg 2995 csbnestg 2996 csbnest1g 2997 int0 3724 mpteq2ia 3946 mpteq2da 3949 ssopab2i 4128 relssi 4558 xpidtr 4855 funcnvsn 5093 funinsn 5097 tfrlem7 6120 tfri1 6168 sucinc 6246 findcard 6684 findcard2 6685 findcard2s 6686 fiintim 6719 fisseneq 6722 frec2uzrand 9961 frec2uzf1od 9962 frecfzennn 9982 hashinfom 10301 zfz1iso 10361 fclim 10837 distop 11937 ch2var 12376 strcollnf 12588 |
Copyright terms: Public domain | W3C validator |