| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version | ||
| Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1562 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-g.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| ax-gen | ⊢ ∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | vx | . 2 setvar 𝑥 | |
| 3 | 1, 2 | wal 1373 | 1 wff ∀𝑥𝜑 |
| Colors of variables: wff set class |
| This axiom is referenced by: gen2 1476 mpg 1477 mpgbi 1478 mpgbir 1479 hbth 1489 19.23h 1524 19.9ht 1667 stdpc6 1729 equveli 1785 cesare 2162 camestres 2163 calemes 2174 ceqsralv 2811 vtocl2 2836 euxfr2dc 2968 sbcth 3022 sbciegf 3040 csbiegf 3148 sbcnestg 3158 csbnestg 3159 csbnest1g 3160 int0 3916 mpteq2ia 4149 mpteq2da 4152 ssopab2i 4345 relssi 4787 xpidtr 5095 iotaexab 5273 funcnvsn 5342 funinsn 5346 tfrlem7 6433 tfri1 6481 sucinc 6561 findcard 7018 findcard2 7019 findcard2s 7020 fiintim 7061 fisseneq 7064 frec2uzrand 10594 frec2uzf1od 10595 frecfzennn 10615 hashinfom 10967 zfz1iso 11030 fclim 11771 mopnset 14481 metuex 14484 distop 14724 ch2var 16041 strcollnf 16258 |
| Copyright terms: Public domain | W3C validator |