Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-gen | GIF version |
Description: Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1534 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-g.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
ax-gen | ⊢ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . 2 setvar 𝑥 | |
3 | 1, 2 | wal 1351 | 1 wff ∀𝑥𝜑 |
Colors of variables: wff set class |
This axiom is referenced by: gen2 1448 mpg 1449 mpgbi 1450 mpgbir 1451 hbth 1461 19.23h 1496 19.9ht 1639 stdpc6 1701 equveli 1757 cesare 2128 camestres 2129 calemes 2140 ceqsralv 2766 vtocl2 2790 euxfr2dc 2920 sbcth 2974 sbciegf 2992 csbiegf 3098 sbcnestg 3108 csbnestg 3109 csbnest1g 3110 int0 3854 mpteq2ia 4084 mpteq2da 4087 ssopab2i 4271 relssi 4711 xpidtr 5011 funcnvsn 5253 funinsn 5257 tfrlem7 6308 tfri1 6356 sucinc 6436 findcard 6878 findcard2 6879 findcard2s 6880 fiintim 6918 fisseneq 6921 frec2uzrand 10373 frec2uzf1od 10374 frecfzennn 10394 hashinfom 10724 zfz1iso 10787 fclim 11268 distop 13154 ch2var 14077 strcollnf 14295 |
Copyright terms: Public domain | W3C validator |