ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandi3r GIF version

Theorem anandi3r 982
Description: Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
Assertion
Ref Expression
anandi3r ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem anandi3r
StepHypRef Expression
1 3anan32 979 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
2 anandir 581 . 2 (((𝜑𝜒) ∧ 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
31, 2bitri 183 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator